188
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Free vibration of pseudoelastic NiTi wire: finite element modeling and numerical design

, , , &
Pages 769-782 | Received 14 Mar 2022, Accepted 03 Sep 2022, Published online: 24 Sep 2022

References

  • J. Wang, 2017. Constitutive Modeling of the Thermomechanical and Cyclic Behavior of Shape Memory Alloys in Finite Deformations, Ph.D. thesis, Université Paris-Saclay.
  • J. Wang, Z. Moumni, W. Zhang, Y. Xu, and W. Zaki, A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation, Smart Mater. Struct., vol. 26, no. 6, pp. 065006, 2017b. DOI: 10.1088/1361-665X/aa6c17.
  • D. C. Lagoudas, Shape Memory Alloys: modeling and Engineering Applications, Springer, New York, NY, United States, 2008.
  • D. Mantovani, Shape memory alloys: Properties and biomedical applications, J. Minerals, Metals & Mater. Soc., vol. 52, no. 10, pp. 36–44, 2000. DOI: 10.1007/s11837-000-0082-4.
  • S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-On, Y. Suzuki and Y. Masuda, An overview of vibration and seismic applications of niti shape memory alloy, Smart Mater. Struct., vol. 11, no. 2, pp. 218–229, 2002. DOI: 10.1088/0964-1726/11/2/305.
  • L. Machado and M. Savi, Medical applications of shape memory alloys, Braz. J. Med. Biol. Res., vol. 36, no. 6, pp. 683–691, 2003.
  • N. Morgan, Medical shape memory alloy applications–the market and its products, Mater. Sci. Engin. : A., vol. 378, no. 1-2, pp. 16–23, 2004. DOI: 10.1016/j.msea.2003.10.326.
  • D. J. Hartl and D. C. Lagoudas, Aerospace applications of shape memory alloys, Proc.Institut. Mech. Engin. Part G: J. Aerospace Engin., vol. 221, no. 4, pp. 535–552, 2007. DOI: 10.1243/09544100JAERO211.
  • J. Wang, Y. Cao, Y. Xu, X. Gu, J. Zhu, and W. Zhang, Finite element modeling of the damping capacity and vibration behavior of cellular shape memory alloy, Mech. Adv. Mater. Struct., vol. 29, no. 15, pp. 2142–2155, 2022. (DOI: 10.1080/15376494.2020.1852349.
  • K. Varughese and R. El-Hacha, Experimental free vibrations test of steel braced frames reinforced with NiTi shape memory alloy wires, Structures., vol. 29, pp. 1165–1172, 2021. DOI: 10.1016/j.istruc.2020.11.022.
  • F. Auricchio, E. Boatti, M. Conti, and S. Marconi, Chapter 19 - SMA biomedical applications. In: A. Concilio, V. Antonucci, F. Auricchio, L. Lecce, and E. Sacco (eds.), Shape Memory Alloy Engineering, Butterworth-Heinemann, Boston, 2nd ed., pp. 627–658, 2021a.
  • P. Lorenza and M. Francesco, Biomedical applications of shape memory alloys, J. Metall., vol. 2011, pp. 1–14, 2011.
  • N. Sanghvi, F. Crasta, and V. K. N. Kottur, Review of application of nitinol in the manufacture of bone staples, In: Proceedings of International Conference on Intelligent Manufacturing and Automation, pp. 315–322. Springer, 2019.
  • J. W. Mwangi, L. T. Nguyen, V. D. Bui, T. Berger, H. Zeidler, and A. Schubert, Nitinol manufacturing and micromachining: A review of processes and their suitability in processing medical-grade nitinol, J. Manuf. Processes., vol. 38, pp. 355–369, 2019. DOI: 10.1016/j.jmapro.2019.01.003.
  • S. K. Patel, B. Behera, B. Swain, R. Roshan, D. Sahoo, and A. Behera, A review on niti alloys for biomedical applications and their biocompatibility, Mater. Today: Proc., vol. 33, pp. 5548–5551, 2020.
  • F. Auricchio, M. Conti, S. Marconi, S. Morganti, and F. Scocozza, Chapter 20 - SMA cardiovascular applications and computer-based design. In: A. Concilio, V. Antonucci, F. Auricchio, L. Lecce, and E. Sacco (eds.), Shape Memory Alloy Engineering, Butterworth-Heinemann, Boston, 2nd ed., pp. 659–685, 2021b.
  • P. W. Clark, I. D. Aiken, J. M. Kelly, M. Higashino, and R. Krumme, Experimental and analytical studies of shape-memory alloy dampers for structural control. In: Smart Structures and Materials 1995: Passive Damping, International Society for Optics and Photonics, Vol. 2445, pp. 241–251, San Diego, CA, United States, 1995.
  • Y.-L. Han, Q. Li, A.-Q. Li, A. Leung, and P.-H. Lin, Structural vibration control by shape memory alloy damper, Earthquake Engng. Struct. Dyn., vol. 32, no. 3, pp. 483–494, 2003. DOI: 10.1002/eqe.243.
  • S. Gur, S. K. Mishra, and G. N. Frantziskonis, Thermo-mechanical strain rate–dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers, J. Intell. Mater. Syst. Struct., vol. 27, no. 9, pp. 1250–1264, 2016. DOI: 10.1177/1045389X15588628.
  • S. Jose, G. Chakraborty, and R. Bhattacharyya, Coupled thermo-mechanical analysis of a vibration isolator made of shape memory alloy, Int. J. Solids Struct., vol. 115, pp. 87–103, 2017.
  • R. Khorasani, S. H. Kordkheili, A. Razov, and N. Resnina, Implementation of visco-pseudo-elastic dampers for vibration reduction of sandwich shells using a large deformation fe technique, Int. J. Mech. Sci., vol. 207, pp. 106559, 2021. DOI: 10.1016/j.ijmecsci.2021.106559.
  • R. K. Mahabadi, M. D. Pazhooh, and M. Shakeri, On the free vibration and design optimization of a shape memory alloy hybrid laminated composite plate, Acta Mech., vol. 232, pp. 323–343, 2021.
  • D. C. Lagoudas, J. J. Mayes, and M. M. Khan, 2001. Simplified shape memory alloy (sma) material model for vibration isolation. In: Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, International Society for Optics and Photonics, vol. 4326, pp. 452–461, Singapore.
  • F. H. Dezfuli and M. S. Alam, Hysteresis model of shape memory alloy wire-based laminated rubber bearing under compression and unidirectional shear loadings, Smart Mater. Struct., vol. 24, no. 6, pp. 065022, 2015. DOI: 10.1088/0964-1726/24/6/065022.
  • D. Bernardini and G. Rega, Evaluation of different SMA models performances in the nonlinear dynamics of pseudoelastic oscillators via a comprehensive modeling framework, Int. J. Mech. Sci., vol. 130, pp. 458–475, 2017. DOI: 10.1016/j.ijmecsci.2017.06.023.
  • J. Wang, Z. Moumni, and W. Zhang, A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys, Int. J. Plast., vol. 97, pp. 194–221, 2017a. DOI: 10.1016/j.ijplas.2017.06.003.
  • E. Graesser and F. Cozzarelli, Shape-memory alloys as new materials for aseismic isolation, J. Eng. Mech., vol. 117, no. 11, pp. 2590–2608, 1991. DOI: 10.1061/(ASCE)0733-9399(1991)117:11(2590).
  • Z. Zhang, L. Feng, P. Sheng, J. Zhang, and Y. Liu, A modified one-dimensional constitutive model of pseudoelastic smas and its application in simulating the force–deformation relationship of sma helical springs, Smart Mater. Struct., vol. 29, no. 11, pp. 115017, 2020. DOI: 10.1088/1361-665X/abaac3.
  • J. Wang, X. Gu, Y. Xu, J. Zhu, and W. Zhang, Thermomechanical modeling of nonlinear internal hysteresis due to incomplete phase transformation in pseudoelastic shape memory alloys, Nonlinear Dyn., vol. 103, no. 2, pp. 1393–1414, 2021. DOI: 10.1007/s11071-020-06121-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.