207
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical property of all-composite diamond honeycomb sandwich structure based on interlocking technology: Experimental tests and numerical analysis

, , &
Pages 973-989 | Received 23 Jun 2022, Accepted 19 Sep 2022, Published online: 03 Nov 2022

References

  • W. Ashraf, M. R. Ishak, M. Y. M. Zuhri, N. Yidris, and A. M. Ya’acob, Effect on mechanical properties by partial replacement of the glass with alkali-treated flax fiber in composite facesheet of sandwich structure, J. Mater. Res. Technol., vol. 13, pp. 89–98, 2021. DOI: 10.1016/j.jmrt.2021.04.047.
  • Y. S. Fan, X. L. Yang, J. He, C. Sun, S. Wang, Y. Gu, and M. Li, The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets, J. Mater. Res. Technol., vol. 15, pp. 6113–6124, 2021. DOI: 10.1016/j.jmrt.2021.11.066.
  • H. Li, Y. B. Hu, H. Y. Huang, J. L. Chen, M. Y. Zhao, and B. Li, Broadband low-frequency vibration attenuation in 3d printed composite meta-lattice sandwich structures, Compos. Part B Eng., vol. 215, pp. 108772, 2021. DOI: 10.1016/j.compositesb.2021.108772.
  • P. B. Liu, S. Gao, Y. Wang, Y. Huang, F. T. Zhou, and P. Z. Liu, Magnetic porous n-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers, Carbon, vol. 173, pp. 655–666, 2021. DOI: 10.1016/j.carbon.2020.11.043.
  • P. K. Mallick, Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures. In: Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead, Sawston Cambridge, UK, pp. 174–207, 2010.
  • G. S. Rao, H. Nabipour, P. Zhang, Y. Hu, W. Xing, L. Song, and Y. Hu, , Lightweight, hydrophobic and recyclable carbon foam derived from lignin-resorcinol-glyoxal resin for oil and solvent spill capture, J. Mater. Res. Technol., vol. 9, no. 3, pp. 4655–4664, 2020. DOI: 10.1016/j.jmrt.2020.02.092.
  • F. G. Ren, L. Wang, and H. T. Liu, Low frequency and broadband vibration attenuation of a novel lightweight bidirectional re-entrant lattice metamaterial, Mater. Lett., vol. 299, pp. 130133, 2021. DOI: 10.1016/j.matlet.2021.130133.
  • T. Wu, Y. J. Sun, X. Liu, and Y. T. Cao, Comparative study of the flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams reinforced and prestressed with cfrp tendons, Eng. Struct., vol. 233, pp. 111901, 2021. DOI: 10.1016/j.engstruct.2021.111901.
  • C. C. Xiang, S. H. Hu, S. H. Zhang, and N. Gupta, Compressive characterization of hemp fiber-epoxy matrix composite for lightweight structures, JOM, vol. 72, no. 6, pp. 2324–2331, 2020. DOI: 10.1007/s11837-020-04024-8.
  • J. H. Zhu, K. Xu, Z. S. Zhang, X. Z. Cao, S. L. Huang, and J. Y. Wu, Carbon clathrates as strong lightweight structures, Int. J. Mech. Sci., vol. 202, pp. 106509, 2021. DOI: 10.1016/j.ijmecsci.2021.106509.
  • R. Adams, S. Townsend, S. Soe, and P. Theobald, Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading, Mater. Des., vol. 213, pp. 110368, 2022. DOI: 10.1016/j.matdes.2021.110368.
  • S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, and M. R. Ishak, Quasi-static compression behaviour of interlocking core structures made of flax fibre reinforced polylactic acid composite, J. Mater. Res. Technol., vol. 9, no. 6, pp. 12065–12070, 2020. DOI: 10.1016/j.jmrt.2020.08.101.
  • S. M. Baek, W. J. Lee, S. Y. Kim, and S. S. Kim, A study on the microwave absorbing honeycomb core embedded with conductive periodic patterned surfaces for the effective dielectric constant, Compos. Struct., vol. 289, pp. 115471, 2022. DOI: 10.1016/j.compstruct.2022.115471.
  • X. J. Chen, G. C. Yu, Z. X. Wang, L. J. Feng, and L. Z. Wu, Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs, Compos. Struct., vol. 255, pp. 112984, 2021. DOI: 10.1016/j.compstruct.2020.112984.
  • Y. T. Du, T. Keller, C. P. Song, L. Z. Wu, and J. Xiong, Origami-inspired carbon fiber-reinforced composite sandwich materials – fabrication and mechanical behavior, Compos. Sci. Technol., vol. 205, pp. 108667, 2021. DOI: 10.1016/j.compscitech.2021.108667.
  • A. Farrokhabadi, M. M. Ashrafian, H. Gharehbaghi, and R. Nazari, Evaluation of the equivalent mechanical properties in a novel composite cruciform honeycomb using analytical and numerical methods, Compos. Struct., vol. 275, pp. 114410, 2021. DOI: 10.1016/j.compstruct.2021.114410.
  • N. S. Ha, G. X. Lu, and X. M. Xiang, Energy absorption of a bio-inspired honeycomb sandwich panel, J. Mater. Sci., vol. 54, no. 8, pp. 6286–6300, 2019. DOI: 10.1007/s10853-018-3163-x.
  • N. S. Ha, T. M. Pham, T. T. Tran, H. Hao, and G. X. Lu, Mechanical properties and energy absorption of bio-inspired hierarchical circular honeycomb, Compos. Part B Eng., vol. 236, pp. 109818, 2022. DOI: 10.1016/j.compositesb.2022.109818.
  • M. S. Irfan, S. Patel, R. Umer, M. A. Ali, and Y. Dong, Thermal and morphological analysis of various 3d printed composite honeycomb cores, Compos. Struct., vol. 290, pp. 115517, 2022. DOI: 10.1016/j.compstruct.2022.115517.
  • Z. D. Li, L. M. Shen, K. Wei, and Z. G. Wang, Compressive behaviors of fractal-like honeycombs with different array configurations under low velocity impact loading, Thin-Walled Struct., vol. 163, pp. 107759, 2021. DOI: 10.1016/j.tws.2021.107759.
  • Z. D. Li, Z. G. Wang, X. X. Wang, and W. Zhou, Bending behavior of sandwich beam with tailored hierarchical honeycomb cores, Thin-Walled Struct., vol. 157, pp. 107001, 2020. DOI: 10.1016/j.tws.2020.107001.
  • A. S. Pareta, R. Gupta, and S. K. Panda, Experimental investigation on fly ash particulate reinforcement for property enhancement of pu foam core frp sandwich composites, Compos. Sci. Technol., vol. 195, pp. 108207, 2020. DOI: 10.1016/j.compscitech.2020.108207.
  • C. Qi, F. Jiang, and S. Yang, Advanced honeycomb designs for improving mechanical properties: A review, Compos. Part B Eng., vol. 227, pp. 109393, 2021. DOI: 10.1016/j.compositesb.2021.109393.
  • J. Q. Qi, C. Li, Y. Tie, Y. P. Zheng, and Y. C. Duan, Energy absorption characteristics of origami-inspired honeycomb sandwich structures under low-velocity impact loading, Mater. Des., vol. 207, pp. 109837, 2021. DOI: 10.1016/j.matdes.2021.109837.
  • M. Z. Wang, J. C. Zhang, W. D. Wang, and L. B. Gao, Compression behaviors of the bio-inspired hierarchical lattice structure with improved mechanical properties and energy absorption capacity, J. Mater. Res. Technol., vol. 17, pp. 2755–2771, 2022. DOI: 10.1016/j.jmrt.2022.02.046.
  • P. Wang, Y. C. Zhang, H. L. Chen, Y. Z. Zhou, F. N. Jin, and H. L. Fan, Broadband radar absorption and mechanical behaviors of bendable over-expanded honeycomb panels, Compos. Sci. Technol., vol. 162, pp. 33–48, 2018. DOI: 10.1016/j.compscitech.2018.04.015.
  • X. Y. Wei, Q. Q. Wu, Y. Gao, and J. Xiong, Bending characteristics of all-composite hexagon honeycomb sandwich beams: Experimental tests and a three-dimensional failure mechanism map, Mech. Mater., vol. 148, pp. 103401, 2020. DOI: 10.1016/j.mechmat.2020.103401.
  • X. Y. Wei, P. C. Xue, Q. Q. Wu, Y. Wang, and J. Xiong, Debonding characteristics and strengthening mechanics of all-cfrp sandwich beams with interface-reinforced honeycomb cores, Compos. Sci. Technol., vol. 218, pp. 109157, 2022. DOI: 10.1016/j.compscitech.2021.109157.
  • W. G. Ye, H. Dou, Y. Y. Cheng, and D. H. Zhang, Self-sensing properties of 3d printed continuous carbon fiber-reinforced PLA/TPU honeycomb structures during cyclic compression, Mater. Lett., vol. 317, pp. 132077, 2022. DOI: 10.1016/j.matlet.2022.132077.
  • B. Zhang, J. Zhou, W. Fu, and M. Luo, Mechanical performance of glue-pressed engineered honeycomb bamboo under axial compression, J. Struct. Eng., vol. 147, no. 4, pp. 4021034, 2021. DOI: 10.1061/(ASCE)ST.1943-541X.0002976.
  • X. Wang, P. Zhang, S. J. Ludwick, E. Belski, and A. C. To, Natural frequency optimization of 3D printed variable-density honeycomb structure via a homogenization-based approach, Addit. Manuf., vol. 20, pp. 189–198, 2018. DOI: 10.1016/j.addma.2017.10.001.
  • G. D. Goh, S. J. C. Neo, V. Diksht, and W. Y. Yeong, Quasi-static indentation and sound-absorbing properties of 3D printed sandwich core panels, J. Sandwich Struct. Mater., vol. 24, no. 2, pp. 1206–1225, 2022. DOI: 10.1177/10996362211037015.
  • C. Quan, B. Han, Z. H. Hou, Q. zhang, X. Y. Tian, and T. J. Lu, 3d printed continuous fiber reinforced composite auxetic honeycomb structures, Compos. Part B Eng., vol. 187, pp. 107858, 2020. DOI: 10.1016/j.compositesb.2020.107858.
  • S. J. Song, C. Xiong, F. H. Tao, J. H. Yin, Y. Zhang, and S. Zhang, Size effect of composite Kagome honeycomb sandwich structure reinforced with PMI foams under quasi-static bending: Experiment tests and numerical analysis, Compos. Struct., vol. 296, pp. 115832, 2022. DOI: 10.1016/j.compstruct.2022.115832.
  • S. C. Xie, Z. J. Feng, H. Zhou, and D. Wang, Three-point bending behavior of Nomex honeycomb sandwich panels: Experiment and simulation, Mech. Adv. Mater. Struct., vol. 28, no. 18, pp. 1917–1931, 2021. DOI: 10.1080/15376494.2020.1712751.
  • L. L. Yan, Y. W. Zhang, K. Y. Zhu, and C. Zhang, Behavior of tube-reinforced double-layer honeycomb sandwich structure subjected to low-velocity impact, Mech. Adv. Mater. Struct., pp. 1–13, 2022. DOI: 10.1080/15376494.2021.2011992.
  • D. Y. Han, and S. W. Tsai, Interlocked composite grids design and manufacturing, J. Compos. Mater., vol. 37, no. 4, pp. 287–316, 2003. DOI: 10.1177/0021998303037004681.
  • S. Jiang, F. F. Sun, X. R. Zhang, and H. L. Fan, Interlocking orthogrid: An efficient way to construct lightweight lattice-core sandwich composite structure, Compos. Struct., vol. 176, pp. 55–71, 2017. DOI: 10.1016/j.compstruct.2017.05.029.
  • B. P. Russell, T. Liu, N. A. Fleck, and V. S. Deshpande, Quasi-static three-point bending of carbon fiber sandwich beams with square honeycomb cores, J. Appl. Mech. Trans. ASME, vol. 78, pp. 031008, 2011. DOI: 10.1115/1.4003221.
  • G. C. Yu, L. J. Feng, and L. Z. Wu, Thermal and mechanical properties of a multifunctional composite square honeycomb sandwich structure, Mater. Des., vol. 102, pp. 238–246, 2016. DOI: 10.1016/j.matdes.2016.04.050.
  • L. J. Feng, Z. T. Yang, G. C. Yu, X. J. Chen, and L. Z. Wu, Compressive and shear properties of carbon fiber composite square honeycombs with optimized high-modulus hierarchical phases, Compos. Struct., vol. 201, pp. 845–856, 2018. DOI: 10.1016/j.compstruct.2018.06.080.
  • H. L. Fan, F. H. Meng, and W. Yang, Mechanical behaviors and bending effects of carbon fiber reinforced lattice materials, Arch. Appl. Mech., vol. 75, no. 10–12, pp. 635–647, 2006. DOI: 10.1007/s00419-006-0032-x.
  • H. L. Fan, F. H. Meng, and W. Yang, Sandwich panels with kagome lattice cores reinforced by carbon fibers, Compos. Struct., vol. 81, no. 4, pp. 533–539, 2007. DOI: 10.1016/j.compstruct.2006.09.011.
  • H. L. Fan, L. Yang, F. F. Sun, and D. N. Fang, Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites, Compos. Part A Appl. Sci. Manuf., vol. 52, pp. 118–125, 2013. DOI: 10.1016/j.compositesa.2013.04.013.
  • H. L. Fan, F. N. Jin, and D. N. Fang, Characterization of edge effects of composite lattice structures, Compos. Sci. Technol., vol. 69, no. 11–12, pp. 1896–1903, 2009. DOI: 10.1016/j.compscitech.2009.04.007.
  • S. J. Song, C. Xiong, J. Zheng, J. H. Yin, Y. C. Zou, and X. J. Zhu, Compression, bending, energy absorption properties, and failure modes of composite kagome honeycomb sandwich structure reinforced by PMI foams, Compos. Struct., vol. 277, pp. 114611 2021. DOI: 10.1016/j.compstruct.2021.114611.
  • S. M. Huybrechts, T. E. Meink, P. M. Wegner, and J. M. Ganley, Manufacturing theory for advanced grid stiffened structures, Compos. Part A Appl. Sci. Manuf., vol. 33, no. 2, pp. 155–161, 2002. DOI: 10.1016/S1359-835X(01)00113-0.
  • H. J. Chen and S. W. Tsai, Analysis and optimum design of composite grid structures, J. Compos. Mater., vol. 30, no. 4, pp. 503–534, 1996. DOI: 10.1177/002199839603000405.
  • A. J. Wang and D. L. McDowell, In-plane stiffness and yield strength of periodic metal honeycombs, J. Eng. Mater. Technol. Trans. ASME, vol. 126, no. 2, pp. 137–156, 2004. DOI: 10.1115/1.1646165.
  • R. J. Vinson, Optimum design of composite honeycomb sandwich panels subjected to uniaxial compression, AIAA J., vol. 24, no. 10, pp. 1690–1696, 1986. DOI: 10.2514/3.9502.
  • W. C. Kim, and C. Dharan, Facesheet debonding criteria for composite sandwich panels under in-plane compression, Eng. Fract. Mech., vol. 42, no. 4, pp. 643–652, 1992. DOI: 10.1016/0013-7944(92)90046-H.
  • H. G. Allen, Analysis Design of Structural Sandwich Panels, Pergamon, Oxford, UK, 1969.
  • A. Petras and M. Sutcliffe, Failure mode maps for honeycomb sandwich panels, Compos. Struct., vol. 44, no. 4, pp. 237–252, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.