93
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Free vibration analysis of a porous functionally graded, truncated conical shell with a magneto-rheological fluid core

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1006-1020 | Received 19 Aug 2022, Accepted 22 Sep 2022, Published online: 12 Dec 2022

References

  • A. S. Sayyad, et al., On the static deformation and frequency analysis of functionally graded porous circular beams, Forces Mech., vol. 7, p. 100093, 2022. DOI: 10.1016/j.finmec.2022.100093.
  • L. Hadji, et al., Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation, Mater. Today: Proc., vol. 53, no. Part 1, pp. 153–160, 2022. DOI: 10.1016/j.matpr.2021.12.485.
  • Y. Kumar, et al., Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model, Adv. Nano Res., vol. 11, pp. 001–017, 2021. DOI: 10.12989/anr.2021.11.1.001.
  • S. I. Tahir, et al., Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment, Compos. Struct., vol. 269, p. 114030, 2021. DOI: 10.1016/j.compstruct.2021.114030.
  • R. Madan, et al., Limit elastic speed analysis of rotating porous annulus functionally graded disks, Steel Compos. Struct., vol. 42, pp. 375–388, 2022. DOI: 10.12989/scs.2022.42.3.375.
  • H. Bellifa, et al., Influence of porosity on thermal buckling behavior of functionally graded beams, Smart Struct. Syst., vol. 27, pp. 719–728, 2021. DOI: 10.12989/sss.2021.27.4.719.
  • M. Kaddari, et al., A study on the structural behavior of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis, Comput. Concr., vol. 25, pp. 37–57, 2020. DOI: 10.12989/CAC.2020.25.1.037.
  • M. Saad and L. Hadji, Thermal buckling analysis of porous FGM plates, Mater. Today: Proc., vol. 53, no. Part 1, pp. 196–201, 2022. DOI: 10.1016/j.matpr.2021.12.550.
  • L. Hadji and M. Avcar, Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory, Adv. Nano Res., vol. 10, pp. 281–293, 2021. DOI: 10.12989/ANR.2021.10.3.281.
  • S. C. Huang, A general theory for layered thick shell of a magnetorheological fluid core, I. C. S., vol. 24, pp. 23–27, 2017.
  • J. Y. Yeh, Vibration and damping analysis of orthotropic cylindrical shells with electrorheological core layer, Aerosp. Sci. Technol., vol. 15, no. 4, pp. 293–303, 2011. DOI: 10.1016/j.ast.2010.08.002.
  • C. P. Wu and H. Chen, Exact solutions of free vibration of simply supported functionally graded piezoelectric sandwich cylinders using a modified Pagano method, J. Sandw. Struct. Mater., vol. 15, no. 2, pp. 229–257, 2013. DOI: 10.1177/1099636212471357.
  • A. H. Sofiyev and N. Kuruoğlu, The stability of FGM truncated conical shells under combined axial and external mechanical loads in the framework of the shear deformation theory, Compos. B: Eng., vol. 92, pp. 463–476, 2016. DOI: 10.1016/j.compositesb.2016.02.027.
  • A. H. Sofiyev, Thermoelastic stability of freely supported functionally graded conical shells within the shear deformation theory, Compos. Struct., vol. 152, pp. 74–84, 2016. DOI: 10.1016/j.compstruct.2016.05.027.
  • M. Mehri, et al., Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method, Comput. Methods Appl. Mech. Eng., vol. 303, pp. 75–100, 2016. DOI: 10.1016/j.cma.2016.01.017.
  • Y. Q. Wang, Y. H. Wan, and Y. F. Zhang, Vibrations of longitudinally traveling functionally graded material plates with porosities, Eur. J. Mech. A Solids, vol. 66, pp. 55–68, 2017. DOI: 10.1016/j.euromechsol.2017.06.006.
  • R. Ansari and J. Torabi, Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading, Compos. B: Eng., vol. 95, pp. 196–208, 2016. DOI: 10.1016/j.compositesb.2016.03.080.
  • A. H. Sofiyev, On the vibration and stability of shear deformable FGM truncated conical shells subjected to an axial load, Compos. B: Eng., vol. 80, pp. 53–62, 2015. DOI: 10.1016/j.compositesb.2015.05.032.
  • N. D. Duc and P. H. Cong, Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations, Eur. J. Mech. A Solids, vol. 50, pp. 120–131, 2015. DOI: 10.1016/j.compositesb.2015.05.032.
  • Z. Su, G. Jin, and T. Ye, Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints, Compos. Struct., vol. 118, pp. 432–447, 2014. DOI: 10.1016/j.compstruct.2014.07.049.
  • Z. Su, G. Jin, S. Shi, T. Ye, and X. Jia, A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions, Int. J. Mech. Sci., vol. 80, pp. 62–80, 2014. DOI: 10.1016/j.ijmecsci.2014.01.002.
  • A. H. Sofiyev, On the buckling of composite conical shells resting on the Winkler–Pasternak elastic foundations under combined axial compression and external pressure, Compos. Struct., vol. 113, pp. 208–215, 2014. DOI: 10.1016/j.compstruct.2014.03.023.
  • P. Malekzadeh and Y. Heydarpour, Free vibration analysis of rotating functionally graded truncated conical shells, Compos. Struct., vol. 97, pp. 176–188, 2013. DOI: 10.1016/j.compstruct.2012.09.047.
  • X. Zhao and K. M. Liew, Free vibration analysis of functionally graded conical shell panels by a meshless method, Compos. Struct., vol. 93, no. 2, pp. 649–664, 2011. DOI: 10.1016/j.compstruct.2012.09.047.
  • A. J. M. Ferreira, C. M. C. Roque, A. M. A. Neves, R. M. N. Jorge, C. M. M. Soares, and J. N. Reddy, Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory, Thin-Walled Struct., vol. 49, no. 7, pp. 804–811, 2011. DOI: 10.1016/j.tws.2011.02.005.
  • A. H. Sofiyev, N. Kuruoglu, and H. M. Halilov, The vibration and stability of non-homogeneous orthotropic conical shells with clamped edges subjected to uniform external pressures, Appl. Math. Modell., vol. 34, no. 7, pp. 1807–1822, 2010. DOI: 10.1016/j.apm.2009.09.025.
  • F. Tornabene, E. Viola, and D. J. Inman, 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures, J. Sound Vib., vol. 328, no. 3, pp. 259–290, 2009. DOI: 10.1016/j.jsv.2009.07.031.
  • Y. Wang and D. Wu, Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory, Aerosp. Sci. Technol., vol. 66, pp. 83–91, 2017. DOI: 10.1016/j.ast.2017.03.003.
  • D. Chen, J. Yang, and S. Kitipornchai, Free and forced vibrations of shear deformable functionally graded porous beams, Int. J. Mech. Sci., vol. 108–109, pp. 14–22, 2016. DOI: 10.1016/j.ijmecsci.2016.01.025.
  • V. Rajamohan, S. Rakheja, and R. Sedaghati, Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid, J. Sound Vib., vol. 329, no. 17, pp. 3451–3469, 2010. DOI: 10.1016/j.jsv.2010.03.010.
  • V. Rajamohan, R. Sedaghati, and S. Rakheja, Vibration analysis of a multi-layer beam containing magnetorheological fluid, Smart Mater. Struct., vol. 19, no. 1, p. 015013, 2010. DOI: 10.1088/0964-1726/19/1/015013.
  • A. R. Damercheloo, A. R. Khorshidvand, S. M. Khorsandijou, and M. Jabbari, Free vibrational characteristics of GNP-reinforced joined conical-conical shells with different boundary conditions, Thin-Walled Struct., vol. 169, p. 108287, 2021. DOI: 10.1016/j.tws.2021.108287.
  • H. Li, Y. X. Hao, W. Zhang, L. T. Liu, S. W. Yang, and D. M. Wang, Vibration analysis of porous metal foam truncated conical shells with general boundary conditions using GDQ, Compos. Struct., vol. 269, p. 114036, 2021. DOI: 10.1016/j.compstruct.2021.114036.
  • M. Safarpour, A. Ghabussi, F. Ebrahimi, M. Habibi, and H. Safarpour, Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM, Thin-Walled Struct., vol. 150, p. 106683, 2020. DOI: 10.1016/j.tws.2020.106683.
  • Y. Xiang, Y.-y. Huang, J. Lu, L.-y. Yuan, and S.-z. Zou, New matrix method for analyzing vibration and damping effect of sandwich circular cylindrical shell with viscoelastic core, Appl. Math. Mech.-Engl. Ed., vol. 29, no. 12, pp. 1587–1600, 2008. DOI: 10.1007/s10483-008-1207-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.