246
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A bridging model and volume averaging approach for the dynamic analyses of 3D braided plates based on 3D shear deformation theory under low-velocity impact

ORCID Icon &
Pages 1021-1042 | Received 27 May 2022, Accepted 23 Sep 2022, Published online: 17 Oct 2022

References

  • B. Gu, A microstructure model for finite-element simulation of 3D rectangular braided composite under ballistic penetration, Philos. Mag., vol. 87, no. 30, pp. 4643–4669, 2007. DOI: 10.1080/14786430701573362.
  • J.M. Yang, C.L. Ma, and T.W. Chou, Fiber inclination model of three-dimensional textile structural composites, J. Compos. Mater., vol. 20, no. 5, pp. 472–484, 1986. DOI: 10.1177/002199838602000505.
  • Z.M. Huang and Y.X. Zhou, Correlation of the bridging model predictions for triaxial failure strengths of composites with experiments, J. Compos. Mater., vol. 47, no. 6–7, pp. 697–731, 2013. DOI: 10.1177/0021998312453864.
  • M.M. Shokrieh and M.S. Mazloomi, A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites, Compos. Struct., vol. 94, no. 3, pp. 1005–1015, 2012. DOI: 10.1016/j.compstruct.2011.09.010.
  • X. Gao, L. Yuan, Y. Fu, X. Yao, and H. Yang, Prediction of mechanical properties on 3D braided composites with void defects, Compos. Part B Eng., vol. 197, no. Nvember 2019, pp. 108164, 2020. DOI: 10.1016/j.compositesb.2020.108164.
  • J.M. Whitney and C.T. Sun, A higher order theory for extensional motion of laminated composites, J. Sound Vib., vol. 30, no. 1, pp. 85–97, 1973. DOI: 10.1016/S0022-460X(73)80052-5.
  • D.K. Maiti and P.K. Sinha, Bending, free vibration and impact response of thick laminated composite plates, Comput. Struct., vol. 59, no. 1, pp. 115–129, 1996. DOI: 10.1016/0045-7949(95)00232-4.
  • T. Kant, Free vibration of symmetrically laminated plates using a higher-order theory with finite element technique, Int. J. Numer. Meth. Eng., vol. 28, no. 8, pp. 1875–1889, 1989. DOI: 10.1002/nme.1620280812.
  • T. Kant and B.S. Manjunatha, An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node, Eng. Comput., vol. 5, no. 4, pp. 300–308, 1988. DOI: 10.1108/eb023749.
  • B. Adim, T.H. Daouadji, and A. Rabahi, A simple higher order shear deformation theory for mechanical behavior of laminated composite plates, Int. J. Adv. Struct. Eng., vol. 8, no. 2, pp. 103–117, 2016. DOI: 10.1007/s40091-016-0109-x.
  • E. Bahmyari and A. Rahbar-Ranji, Free vibration analysis of orthotropic plates with variable thickness resting on non-uniform elastic foundation by element free Galerkin method, J. Mech. Sci. Technol., vol. 26, no. 9, pp. 2685–2694, 2012. DOI: 10.1007/s12206-012-0713-z.
  • E. Carrera, F. Miglioretti, and M. Petrolo, Accuracy of refined finite elements for laminated plate analysis, Compos. Struct., vol. 93, no. 5, pp. 1311–1327, 2011. DOI: 10.1016/j.compstruct.2010.11.007.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, Arch. Comput. Methods Eng., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • M. Petrolo and A. Lamberti, Axiomatic/asymptotic analysis of refined layer-wise theories for composite and sandwich plates, Mech. Adv. Mater. Struct., vol. 23, no. 1, pp. 28–42, 2016. DOI: 10.1080/15376494.2014.924607.
  • M. Petrolo, A. Lamberti, and F. Miglioretti, Best theory diagram for metallic and laminated composite plates, Mech. Adv. Mater. Struct., vol. 23, no. 9, pp. 1114–1130, 2016. DOI: 10.1080/15376494.2015.1121525.
  • M. Petrolo and E. Carrera, Best spatial distributions of shell kinematics over 2D meshes for free vibration analyses, Aerotec. Missili Spaz., vol. 99, no. 3, pp. 217–232, 2020. DOI: 10.1007/s42496-020-00045-3.
  • M. Cinefra, Free-vibration analysis of laminated shells via refined MITC9 elements, Mech. Adv. Mater. Struct., vol. 23, no. 9, pp. 937–947, 2016. DOI: 10.1080/15376494.2015.1121556.
  • M.H. Nagaraj, I. Kaleel, E. Carrera, and M. Petrolo, Contact analysis of laminated structures including transverse shear and stretching, Eur. J. Mech. A/Solids., vol. 80, no. vember 2019, pp. 103899, 2020. DOI: 10.1016/j.euromechsol.2019.103899.
  • M.H. Nagaraj, E. Carrera, and M. Petrolo, Progressive damage analysis of composite laminates subjected to low-velocity impact using 2D layer-wise structural models, Int. J. Non. Linear. Mech., vol. 127, no. June, pp. 103591, 2020. DOI: 10.1016/j.ijnonlinmec.2020.103591.
  • M.H. Nagaraj, I. Kaleel, E. Carrera, and M. Petrolo, Elastoplastic micromechanical analysis of fiber-reinforced composites with defects, Aerotec. Missili Spaz., vol. 101, no. 1, pp. 53–59, 2022. DOI: 10.1007/s42496-021-00103-4.
  • E.J. Pineda, A.M. Waas, B.A. Bednarcyk, S.M. Arnold, and C.S. Collier, Multiscale Failure Analysis of Laminated Composite Panels Subjected to Blast Loading Using FEAMAC/Explicit October 2009, October, no. October, 2009.
  • E.J. Pineda, A.M. Waas, B.A. Bednarcyk, C.S. Collier, and P.W. Yarrington, Progressive damage and failure modeling in notched laminated fiber reinforced composites, Int. J. Fract., vol. 158, no. 2, pp. 125–143, 2009. DOI: 10.1007/s10704-009-9370-3.
  • E.J. Pineda, A.M. Waas, B.A. Bednarcyk, C.S. Collier, and P.W. Yarrington, A novel multiscale physics based progressive failure methodology for laminated composite structures, Collect. Tech. Pap. – 49th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference, Schaumburg, IL April, 2008. DOI: 10.2514/6.2008-1929.
  • E.J. Pineda, B.A. Bednarcyk, T.M. Ricks, S.M. Arnold, and G. Henson, Efficient multiscale recursive micromechanics of composites for engineering applications, Int. J. Mult. Comp. Eng., vol. 19, no. 4, pp. 77–105, 2021. DOI: 10.1615/IntJMultCompEng.2021039732.
  • E. Carrera, and V.V. Zozulya, Carrera unified formulation (CUF) for the micropolar plates and shells. II. Complete linear expansion case, Mech. Adv. Mater. Struct., vol. 29, no. 6, pp. 796–815, 2022. DOI: 10.1080/15376494.2020.1793242.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation (CUF) for the micropolar plates and shells. I. Higher order theory, Mech. Adv. Mater. Struct., vol. 29, no. 6, pp. 773–795, 2022. DOI: 10.1080/15376494.2020.1793241.
  • C.T. Sun and J.K. Chen, On the impact of initially stressed composite laminates, J. Compos. Mater., vol. 19, no. 6, pp. 490–504, 1985. DOI: 10.1177/002199838501900601.
  • L.U. Chun and K.Y. Lam, Dynamic response of fully-clamped laminated composite plates subjected to low-velocity impact of a mass, Int. J. Solids Struct., vol. 35, no. 11, pp. 963–979, 1998. DOI: 10.1016/S0020-7683(96)00231-4.
  • I.H. Choi and C.H. Lim, Low-velocity impact analysis of composite laminates using linearized contact law, Compos. Struct., vol. 66, no. 1–4, pp. 125–132, 2004. DOI: 10.1016/j.compstruct.2004.04.030.
  • G. Minak and D. Ghelli, Influence of diameter and boundary conditions on low velocity impact response of CFRP circular laminated plates, Compos. Part B Eng., vol. 39, no. 6, pp. 962–972, 2008. DOI: 10.1016/j.compositesb.2008.01.001.
  • P. Tasneem, A.Z. Khalid, and F.K.S. Al-Jahwari, Effects of boundary conditions in laminated composite plates using higher order shear deformation theory, Appl. Compos. Mater., vol. 17, no. 5, pp. 499–514, 2010. DOI: 10.1007/s10443-010-9166-7.
  • M. Shariyat and F. Farzan Nasab, Eccentric low-velocity impact analysis of transversely graded plates with Winkler-type elastic foundations and fully or partially supported edges, Thin-Walled Struct., vol. 84, pp. 112–122, 2014. DOI: 10.1016/j.tws.2014.05.011.
  • H. Zarei, M. Fallah, H. Bisadi, A.R. Daneshmehr, and G. Minak, Multiple impact response of temperature-dependent carbon nanotube-reinforced composite (CNTRC) plates with general boundary conditions, Compos. Part B Eng., vol. 113, pp. 206–217, 2017. DOI: 10.1016/j.compositesb.2017.01.021.
  • M. Hu, J. Zhang, B. Sun, and B. Gu, Finite element modeling of multiple transverse impact damage behaviors of 3-D braided composite beams at microstructure level, Int. J. Mech. Sci., vol. 148, no. August, pp. 730–744, 2018. DOI: 10.1016/j.ijmecsci.2018.09.034.
  • X. Gao, B. Sun, and B. Gu, Damage mechanisms of 3-D rectangular braided composite under multiple impact compressions, Aerosp. Sci. Technol., vol. 82–83, pp. 46–60, 2018. DOI: 10.1016/j.ast.2018.08.031.
  • Z. Wu, L. Shi, X. Cheng, Z. Xiang, and X. Hu, Transverse impact behavior and residual axial compression characteristics of braided composite tubes: Experimental and numerical study, Int. J. Impact Eng., vol. 142, no. March, pp. 103578, 2020. DOI: 10.1016/j.ijimpeng.2020.103578.
  • S. Patil and D. Mallikarjuna Reddy, Study of oblique low velocity impact on composite plate, Mater. Today Proc., vol. 46, pp. 9433–9437, 2021. DOI: 10.1016/j.matpr.2020.03.125.
  • B. Shi, M. Zhang, S. Liu, B. Sun, and B. Gu, Multi-scale ageing mechanisms of 3D four directional and five directional braided composites’ impact fracture behaviors under thermo-oxidative environment, Int. J. Mech. Sci., vol. 155, no. February, pp. 50–65, 2019. DOI: 10.1016/j.ijmecsci.2019.02.040.
  • Z. Pan, F. Qiao, M. Wang, Z. Wu, and Z. Ying, A novel damage mechanism analysis of integrally braided CFRP and CFRP/aluminum hybrid composite tube subjected to transverse impact, Mater. Des., vol. 206, pp. 109815, 2021. DOI: 10.1016/j.matdes.2021.109815.
  • Z. Zhao, H. Dang, P. Liu, Z. Guo, C. Zhang, and Y. Li, On the impact failure behavior of triaxially braided composites subjected to metallic plate projectile, Compos. Part B Eng., vol. 186, no. January, pp. 107816, 2020. DOI: 10.1016/j.compositesb.2020.107816.
  • D. sen Li, W. Fen Han, and L. Jiang, High strain rate impact effect and failure behavior of 3D six-directional braided composites, Extrem. Mech. Lett., vol. 45, pp. 101291, 2021.
  • X. Wang, J. He, W. Guo, and X. Guan, Three-dimensional damage quantification of low velocity impact damage in thin composite plates using phased-array ultrasound, Ultrasonics, vol. 110, no. May 2020, pp. 106264, 2021.
  • P. Maji, B.N. Singh, and D.B. Singh, A third-order polynomial for the free vibration response of 3D braided curved panels using various boundary conditions, Mech. Based Des. Struct. Mach., vol. 0, no. 0, pp. 1–23, 2021. DOI: 10.1080/15397734.2021.1894574.
  • D.B. Singh, and B.N. Singh, Assessment and accuracy of new nonpolynomial shear deformation theories for static analysis of laminated and braided composite plates, J. Aerosp. Eng., vol. 30, no. 5, 2017. DOI: 10.1061/(ASCE)AS.1943-5525.0000768.
  • P. Maji and B.N. Singh, Shear deformation theory for free vibration responses of 3D braided pre-twisted conical shells under rotation, Int. J. Comput. Methods Eng. Sci. Mech., vol. 23, pp. 99–118, 2021.
  • P. Maji and B.N. Singh, Free vibration responses of 3D braided rotating cylindrical shells based on third-order shear deformation, Compos. Struct., vol. 260, no. July 2020, pp. 113255, 2021. DOI: 10.1016/j.compstruct.2020.113255.
  • G. Patnaik, A. Kaushik, A. Rajput, G. Prakash, and R. Velmurugan, Ballistic performance of quasi-isotropic CFRP laminates under low velocity impact, J. Compos. Mater., vol. 55, no. 24, pp. 3511–3527, 2021. DOI: 10.1177/00219983211023869.
  • C. Zhang, J.L. Curiel-Sosa, and T.Q. Bui, Meso-scale progressive damage modeling and life prediction of 3D braided composites under fatigue tension loading, Compos. Struct., vol. 201, pp. 62–71, 2018. DOI: 10.1016/j.compstruct.2018.06.021.
  • Z. Wu, C. Wu, Y. Liu, X. Cheng, and X. Hu, Experimental study on the low-velocity impact response of braided composite panel: Effect of stacking sequence, Compos. Struct., vol. 252, no. July, pp. 112691, 2020. DOI: 10.1016/j.compstruct.2020.112691.
  • Z. Pan, Transverse impact damage and axial compression failure of square braided CFRP/PMI sandwich composite beams, Thin-Walled Struct., vol. 162, Article no. 107547, February, 2021.
  • T. Kant and K. Swaminathan, Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory, Compos. Struct., vol. 53, no. 1, pp. 73–85, 2001. DOI: 10.1016/S0263-8223(00)00180-X.
  • J.N. Reddy and C.F. Liu, A higher-order shear deformation theory, J. Eng. Sci., vol. 23, no. 3, pp. 319–330, 1985. DOI: 10.1016/0020-7225(85)90051-5.
  • M. Asce, Exact solutions of moderately thick laminated shells, J. Eng. Mech., vol. 110, no. 5, pp. 794–809, 1984.
  • E. Carrera, The effects of shear deformation and curvature on buckling and vibrations of cross-ply laminated composite shells, J. Sound Vib., vol. 150, no. 3, pp. 405–433, 1991. DOI: 10.1016/0022-460X(91)90895-Q.
  • H.T. Thai and S.E. Kim, Free vibration of laminated composite plates using two variable refined plate theory, Int. J. Mech. Sci., vol. 52, no. 4, pp. 626–633, 2010. DOI: 10.1016/j.ijmecsci.2010.01.002.
  • D.B. Singh and B.N. Singh, New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates, Int. J. Mech. Sci., vol. 131–132, no. April, pp. 265–277, 2017. DOI: 10.1016/j.ijmecsci.2017.06.053.
  • J. Yang and X. Huang, Dynamic stability behavior of 3D braided composite plates integrated with piezoelectric layers, J. Compos. Mater., vol. 43, no. 20, pp. 2223–2238, 2009. DOI: 10.1177/0021998309339219.
  • M. Rout, S.S. Hota, and A. Karmakar, Prediction of impact response of delaminated pretwisted stiffened shell, Aust. J. Mech. Eng., vol. 19, no. 2, pp. 173–185, 2021. DOI: 10.1080/14484846.2019.1600212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.