191
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Analytical solution for first ply failure analysis of laminated plates using Reddy–Legendre higher-order theory

, , &
Pages 1043-1058 | Received 05 Aug 2022, Accepted 24 Sep 2022, Published online: 10 Oct 2022

References

  • A. S. Kaddour, M. J. Hinton, and P. D. Soden, A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions, Compos. Sci. Technol., vol. 64, no. 3–4, pp. 449–476, 2004. DOI: 10.1016/S0266-3538(03)00226-4.
  • R. Joshi, P. Pal, and S. K. Duggal, Ply-by-ply failure analysis of laminates using finite element method, Eur. J. Mech. A Solids, vol. 81, p. 103964, 2020. DOI: 10.1016/j.euromechsol.2020.103964.
  • R. M. Jones, Mechanics of Composite Materials, CRC Press, Boca Raton, 1999.
  • O. Hoffman, The Brittle strength of orthotropic materials, J. Compos. Mater., vol. 1, no. 2, pp. 200–206, 1967. DOI: 10.1177/002199836700100210.
  • R. Hill, Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour, J. Mech. Phys. Solids, vol. 12, no. 4, pp. 199–212, 1964. DOI: 10.1016/0022-5096(64)90019-5.
  • S. W. Tsai and E. Wu, A general theory of strength for anisotropic materials, J Compos Mater., vol. 5, no. 1, pp. 58–80, 1971. DOI: 10.1177/002199837100500106.
  • A. Puck and H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models, Compos. Sci. Technol., vol. 62, no. 12–13, pp. 1633–1662, 2002. DOI: 10.1016/S0266-3538(01)00208-1.
  • Z. Hashin, Fatigue failure criteria for unidirectional fiber composites, J. Appl. Mech. Trans. ASME, vol. 47, no. 2, pp. 329–334, 1980. DOI: 10.1115/1.3157744.
  • S. Tolson and N. Zabaras, Finite element analysis of progressive failure in laminated composite plates, Comput. Struct., vol. 38, no. 3, pp. 361–376, 1991. DOI: 10.1016/0045-7949(91)90113-Z.
  • M. F. Caliri, A. J. M. Ferreira, and V. Tita, A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method, Compos. Struct., vol. 156, pp. 63–77, 2016. DOI: 10.1016/j.compstruct.2016.02.036.
  • P. G. Ciarlet and L. Gratie, Another approach to linear shell theory and a new proof of Korn’s inequality on a surface, C. R. Math., vol. 340, no. 6, pp. 471–478, 2005. DOI: 10.1016/j.crma.2005.01.021.
  • W. Y. Jung and S. C. Han, A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures, Adv. Mech. Eng., vol. 7, no. 4, p. 168781401558127, 2015. DOI: 10.1177/1687814015581272.
  • H. Nguyen-Van, N. Mai-Duy, and T. Tran-Cong, Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element, J. Sound Vib., vol. 313, no. 1–2, pp. 205–223, 2008. DOI: 10.1016/j.jsv.2007.11.043.
  • E. Carrera, S. Valvano, and M. Filippi, Classical, higher-order, zig-zag and variable kinematic shell elements for the analysis of composite multilayered structures, Eur. J. Mech. A Solids, vol. 72, pp. 97–110, 2018. DOI: 10.1016/j.euromechsol.2018.04.015.
  • E. Carrera and E. Zappino, Carrera unified formulation for free-vibration analysis of aircraft structures, AIAA J., vol. 54, no. 1, pp. 280–292, 2016. DOI: 10.2514/1.J054265.
  • D. Versino, M. Gherlone, M. Mattone, MDi Sciuva, and A. Tessler, C0 triangular elements based on the Refined Zigzag Theory for multilayer composite and sandwich plates, Compos. B: Eng., vol. 44, no. 1, pp. 218–230, 2013. DOI: 10.1016/j.compositesb.2012.05.026.
  • J. L. Mantari and C. Guedes Soares, Generalized layerwise HSDT and finite element formulation for symmetric laminated and sandwich composite plates, Compos. Struct., vol. 105, pp. 319–331, 2013. DOI: 10.1016/j.compstruct.2013.04.042.
  • A. Kumar, A. Chakrabarti, and P. Bhargava, Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory, Compos. Struct., vol. 106, pp. 270–281, 2013. DOI: 10.1016/j.compstruct.2013.06.021.
  • A. Pagani, S. Valvano, and E. Carrera, Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements, J. Sandw. Struct. Mater., vol. 20, no. 1, pp. 4–41, 2018. DOI: 10.1177/1099636216650988.
  • X. Y. Li and D. S. Liu, Generalized laminate theories based on double superposition hypothesis, Int. J. Numer. Methods Eng., vol. 40, no. 7, pp. 1197–1212, 1997. DOI: 10.1002/(sici)1097-0207(19970415)40:7<1197::aid-nme109>3.0.co;2-b.
  • Z. Wu and W. J. Chen, A higher-order theory and refined three-node triangular element for functionally graded plates, Eur. J. Mech. A Solids, vol. 25, pp. 447–463, 2006. DOI: 10.1016/j.euromechsol.2005.09.009.
  • J. N. Reddy, A refined nonlinear theory of plates with transverse shear deformation, Int. J. Solids Struct., vol. 20, no. 9–10, pp. 881–896, 1984. DOI: 10.1016/0020-7683(84)90056-8.
  • C. Wanji and W. Zhen, A selective review on recent development of displacement-based laminated plate theories, Recent Pat. Mech. Eng., vol. 1, no. 1, pp. 29–44, 2008. DOI: 10.2174/2212797610801010029.
  • K. Draiche, M. M. Selim, A. A. Bousahla, A. Tounsi, F. Bourada, A. Tounsi, and S. R. Mahmoud, A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT, Steel and Composite Structures., vol. 41, pp. 697–711, 2021, DOI: 10.12989/scs.2021.41.5.697.
  • O. Allam, K. Draiche, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, S. R. Mahmoud, E. A. Bedia, and A. Tounsi, A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells, Comput. Concrete, vol. 26, pp. 185–201, 2020. DOI: 10.12989/cac.2020.26.2.185.
  • N. Belbachir, M. Bourada, K. Draiche, A. Tounsi, F. Bourada, A. A. Bousahla, and S. R. Mahmoud, Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory, Smart Struct. Syst., vol. 25, pp. 409–422, 2020. DOI: 10.12989/sss.2020.25.4.409.
  • N. Belbachir, K. Draiche, A. A. Bousahla, M. Bourada, A. Tounsi, and M. Mohammadimehr, Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings, Steel Compos. Struct., vol. 33, pp. 81–92, 2019. DOI: 10.12989/scs.2019.33.1.081.
  • M. Abualnour, A. Chikh, H. Hebali, A. Kaci, A. Tounsi, and A. A. Bousahla, Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory, Comput. Concretevol. 24, pp. 489–498, 2019. DOI: 10.12989/cac.2019.24.6.489.
  • J. N. Reddy and A. K. Pandey, A first-ply failure analysis of composite laminates, Comput. Struct., vol. 25, no. 3, pp. 371–393, 1987. DOI: 10.1016/0045-7949(87)90130-1.
  • Y. S. N. Reddy and J. N. Reddy, Linear and non-linear failure analysis of composite laminates with transverse shear, Compos. Sci. Technol., vol. 44, no. 3, pp. 227–255, 1992. DOI: 10.1016/0266-3538(92)90015-U.
  • T. Y. Kam and T. B. Jan, First-ply failure analysis of laminated composite plates based on the layerwise linear displacement theory, Compos. Struct., vol. 32, no. 1–4, pp. 583–591, 1995. DOI: 10.1016/0263-8223(95)00069-0.
  • B. G. Prusty, S. K. Satsangi, and C. Ray, First ply failure analysis of laminated panels under transverse loading, J. Reinf. Plast. Compos., vol. 20, no. 8, pp. 671–684, 2001. DOI: 10.1177/073168401772679020.
  • P. Pal and S. K. Bhattacharyya, Progressive failure analysis of cross-ply laminated composite plates by finite element method, J. Reinf. Plast. Compos., vol. 26, no. 5, pp. 465–477, 2007. DOI: 10.1177/0731684406072533.
  • R. Zahari and A. El-Zafrany, Progressive failure analysis of composite laminated stiffened plates using the finite strip method, Compos. Struct., vol. 87, no. 1, pp. 63–70, 2009. DOI: 10.1016/j.compstruct.2007.12.006.
  • C. S. Lee, J. H. Kim, S. Kim, D.-M. Ryu, and J.-M. Lee, Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method, Compos. Struct., vol. 121, pp. 406–419, 2015. DOI: 10.1016/j.compstruct.2014.11.011.
  • M. Lezgy-Nazargah, Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams, Acta Mech., vol. 228, no. 5, pp. 1923–1940, 2017. DOI: 10.1007/s00707-017-1807-6.
  • A. Kumar, Ultimate strength analysis of laminated composite sandwich plates, Structures, vol. 14, pp. 95–110, 2018. DOI: 10.1016/j.istruc.2018.02.004.
  • A. Kumar and A. Chakrabarti, Failure mode analysis of laminated composite sandwich plate, Eng. Fail. Anal., vol. 104, pp. 950–976, 2019. DOI: 10.1016/j.engfailanal.2019.06.080.
  • S. A. M. Ghannadpour and N. Abdollahzadeh, Progressive failure analysis of thick imperfect composite plates using nonlinear plate theory, Int. J. Non-Linear Mech., vol. 121, p. 103292, 2020. DOI: 10.1016/j.ijnonlinmec.2019.103292.
  • M. H. Nagaraj, M. Petrolo, and E. Carrera, A global–local approach for progressive damage analysis of fiber-reinforced composite laminates, Thin-Walled Struct., vol. 169, p. 108343, 2021. DOI: 10.1016/j.tws.2021.108343.
  • E. Carrera, Mixed layer-wise models for multilayered plates analysis, Compos. Struct., vol. 43, no. 1, pp. 57–70, 1998. DOI: 10.1016/S0263-8223(98)00097-X.
  • E. Carrera, A refined multilayered finite-element model applied to linear and non-linear analysis of sandwich plates, Compos. Sci. Technol., vol. 58, no. 10, pp. 1553–1569, 1998. DOI: 10.1016/S0266-3538(97)00215-7.
  • E. Carrera, A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Compos. Struct., vol. 48, no. 4, pp. 245–260, 2000. DOI: 10.1016/S0263-8223(99)00112-9.
  • E. Carrera, A. G. de Miguel, and A. Pagani, Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications, Int. J. Mech. Sci., vol. 120, pp. 286–300, 2017. DOI: 10.1016/j.ijmecsci.2016.10.009.
  • A. Pagani, A. G. de Miguel, M. Petrolo, and E. Carrera, Analysis of laminated beams via unified formulation and Legendre polynomial expansions, Compos. Struct., vol. 156, pp. 78–92, 2016. DOI: 10.1016/j.compstruct.2016.01.095.
  • G. Li, A. G. de Miguel, A. Pagani, E. Zappino, and E. Carrera, Finite beam elements based on Legendre polynomial expansions and node-dependent kinematics for the global-local analysis of composite structures, Eur. J. Mech. A Solids, vol. 74, pp. 112–123, 2019. DOI: 10.1016/j.euromechsol.2018.11.006.
  • G. Li and E. Carrera, Shell finite element models with local kinematic refinements based on Reissner’s mixed variational theorem with layer-wise descriptions, Compos. Struct., vol. 250, p. 112587, 2020. DOI: 10.1016/j.compstruct.2020.112587.
  • J. Zhou, Z. Wu, Z. Liu, R. Lin, B. Ji, L. Lei, and H. Han, An alternative three-node triangular composite shell element in terms of Reddy-type higher-order theory, Thin-Walled Struct., vol. 170, pp. 108568, 2022. DOI: 10.1016/j.tws.2021.108568.
  • S. Kapuria, P. C. Dumir, and N. K. Jain, Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams, Compos. Struct., vol. 64, no. 3–4, pp. 317–327, 2004. DOI: 10.1016/j.compstruct.2003.08.013.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • E. Carrera and G. Giunta, Hierarchical evaluation of failure parameters in composite plates, AIAA J., vol. 47, no. 3, pp. 692–702, 2009. DOI: 10.2514/1.38585.
  • N. J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos. Mater., vol. 4, no. 1, pp. 20–34, 1970. DOI: 10.1016/0010-4361(70)90076-5.
  • P. Nali and E. Carrera, A numerical assessment on two-dimensional failure criteria for composite layered structures, Compos. B: Eng., vol. 43, no. 2, pp. 280–289, 2012. DOI: 10.1016/j.compositesb.2011.06.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.