155
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Reflection of hygrothermal waves in a Nonlocal Theory of coupled thermo-elasticity

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1083-1096 | Received 02 Aug 2022, Accepted 26 Sep 2022, Published online: 12 Oct 2022

References

  • D. S. Chandrasekharaih, Thermoelasticity with second sound: a review, Appl. Mech. Rev., vol. 39, no. 3, pp. 355–376, 1986.
  • R. B. Hetnarski, and J. Ignaczak, Generalized thermoelasticity, J. Therm. Stresses, vol. 22, pp. 451–476, 1999.
  • A. Szekeres, Analogy between heat and moisture thermo-hygromechanical tailoring of composites by taking into account the second sound phenomenon, Comput. Struct., vol. 76, no. 1–3, pp. 145–152, 2000. DOI: 10.1016/S0045-7949(99)00170-4.
  • A. Szekeres, Cross-coupled heat and moisture transport: Part 1 theory, J. Therm. Stresses, vol. 35, no. 1–3, pp. 248–268, 2012. DOI: 10.1080/01495739.2012.637827.
  • T. Gasch, R. Malm, and A. Ansell, Coupled hygro-thermomechanical model for concrete subjected to variable environmental conditions, Int. J. Solids Struct., vol. 91, pp. 143–156, 2016. DOI: 10.1016/j.ijsolstr.2016.03.004.
  • A. Szekeres, and J. Engelbrecht, Coupling of generalized heat and moisture transfer, Period. Polytech. Ser. Mech. Eng., vol. 44, no. 1, pp. 161–170, 2000.
  • M. Gigliotti, F. Jacquemin, J. Molimard, and A. Vautrin, Transient and cyclical hygrothermoelastic stress in laminated composite plates: Modelling and experimental assessment, Mech. Mater., vol. 39, no. 8, pp. 729–745, 2007. DOI: 10.1016/j.mechmat.2006.12.006.
  • J. Aboudi, and T. O. Williams, A coupled micro-macromechanical analysis of hygrothermoelastic composites, Int. J. Solids Struct., vol. 37, no. 30, pp. 4149–4179, 2000. DOI: 10.1016/S0020-7683(99)00145-6.
  • M. Bene, and R. A. Tefan, Hygro-thermo-mechanical analysis of spalling in concrete walls at high temperatures as a moving boundary problem, Int. J. Heat Mass Transf., vol. 85, pp. 110–134, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.050.
  • M. Koniorczyk, D. Gawin, and B. A. Schrefler, Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygro-thermal conditions, Comput. Methods Appl. Mech. Eng., vol. 297, pp. 38–61, 2015. DOI: 10.1016/j.cma.2015.08.015.
  • F. Ahmad, J. W. Hong, H. S. Choi, and M. K. Park, Hygro effects on the low-velocity impact behavior of unidirectional CFRP composite plates for aircraft applications, Compos. Struct., vol. 135, pp. 276–285, 2016. DOI: 10.1016/j.compstruct.2015.09.040.
  • W.-J. Chang, T.-C. Chen, and C.-I. Weng, Transient hygrothermal stresses in an infinitely long annular cylinder: Coupling of heat and moisture, J. Thermal Stresses, vol. 14, no. 4, pp. 439–454, 1991. DOI: 10.1080/01495739108927078.
  • W.-J. Chang, Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture, Appl. Math. Modell., vol. 18, no. 8, pp. 467–473, 1994. DOI: 10.1016/0307-904X(94)90309-3.
  • W. J. Chang, and C. I. Weng, Small time behavior of hygrothermal stresses in axisymmetric double-layer cylinders, J. Thermal Stresses, vol. 23, no. 1, pp. 15–46, 2000. DOI: 10.1080/014957300280542.
  • W. J. Chang, and C. I. Weng, An analytical solution to coupled heat and moisture diffusion transfer in porous materials, Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3621–3632, 2000. DOI: 10.1016/S0017-9310(00)00003-X.
  • A. Zenkour, Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations, Compos. Struct., vol. 93, no. 1, pp. 234–238, 2010. DOI: 10.1016/j.compstruct.2010.04.017.
  • J. M. Whitney, and J. E. Ashton, Effect of environment on the elastic response of layered composite plates, AIAA J., vol. 9, no. 9, pp. 1708–1713, 1971. DOI: 10.2514/3.49976.
  • K. S. Sai Ram, and P. K. Sinha, Hygrothermal effects on the free vibration of laminated composite plates, J. Sound Vibr., vol. 158, no. 1, pp. 133–148, 1992. DOI: 10.1016/0022-460X(92)90669-O.
  • S. Y. Lee, C. J. Chou, J. L. Jang, and J. S. Lim, Hygrothermal effects on the linear and nonlinear analysis of symmetric angle-ply laminated plates, Compos. Struct., vol. 21, no. 1, pp. 41–48, 1992. DOI: 10.1016/0263-8223(92)90078-Q.
  • A. Bahrami, and A. Nosier, Interlaminar hygrothermal stresses in laminated plates, Int. J. Solids Struct., vol. 44, no. 25–26, pp. 8119–8142, 2007. DOI: 10.1016/j.ijsolstr.2007.06.004.
  • D. Gawin, F. Pesavento, and B. A. Schrefler, Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation, Comput. Methods Appl. Mech. Eng., vol. 192, no. 13–14, pp. 1731–1771, 2003. DOI: 10.1016/S0045-7825(03)00200-7.
  • V. V. S. Rao, and P. K. Sinha, Dynamic response of multidirectional composites in hygrothermal environments, Compos. Struct., vol. 64, no. 3–4, pp. 329–338, 2004. DOI: 10.1016/j.compstruct.2003.09.002.
  • R. Chiba, and Y. Sugano, Transient hygrothermoelastic analysis of layered plates with one-dimensional temperature and moisture variations through the thickness, Compos. Struct., vol. 93, no. 9, pp. 2260–2268, 2011. DOI: 10.1016/j.compstruct.2011.03.014.
  • M. Zidi, A. Tounsi, M. S. A. Houari, E. A. A. Bedia, and O. A. Bg, Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory, Aerosp. Sci. Technol., vol. 34, pp. 24–34, 2014. DOI: 10.1016/j.ast.2014.02.001.
  • G. C. Sih, J. G. Michopoulos, and S. C. Chou, Hygrothermoelasticity, Martinus Nijhoff Publishing, Dordrecht, The Netherlands, 1986.
  • G. C. Sih, M. T. Shih, and S. C. Chou, Transient hygrothermal stresses in composites: Coupling of moisture and heat with temperature varying diffusivity, Int. J. Eng. Sci., vol. 18, no. 1, pp. 19–42, 1980. DOI: 10.1016/0020-7225(80)90004-X.
  • R. C. Chang, and C. K. Chao, General solution to the hygrothermoelastic interface problem with discontinuity between dissimilar anisotropic media, J. Appl. Phys., vol. 74, no. 12, pp. 7085–7093, 1993. DOI: 10.1063/1.355022.
  • J. Tong, B. K. Zhang, Z. L. Xu, J. Su, and P. F. Hou, Two-dimensional steady-state general solutions for isotropic hygrothermoelastic media with applications, Z. Angew. Math. Phys., vol. 70, no. 5, pp. 147, 2019. DOI: 10.1007/s00033-019-1190-3.
  • S. M. Hosseini, J. Sladek, and V. Sladek, Application of meshless local integral equations to two- dimensional analysis of coupled non-Fick diffusionelasticity, Eng. Anal. Boundary Elem., vol. 37, no. 3, pp. 603–615, 2013. DOI: 10.1080/01495739.20161224134.
  • Y. C. Yang, S. S. Chu, H. L. Lee, and S. L. Lin, Hybrid numerical method applied to transient hygrothermal analysis in an annular cylinder, Int. Commun. Heat Mass Transf., vol. 33, no. 1, pp. 102–111, 2006. DOI: 10.1016/j.icheatmasstransfer.2005.08.007.
  • A. C. Eringen, Linear theory of nonlocal elasticity and dispersion plane waves, Int. J. Eng. Sci., vol. 10, no. 5, pp. 425–435, 1972. DOI: 10.1016/0020-7225(72)90050-X.
  • A. C. Eringen, Theory of nonlocal thermoelasticity, Int. J. Eng. Sci., vol. 12, no. 12, pp. 1063–1077, 1974. DOI: 10.1016/0020-7225(74)90033-0.
  • A. C. Eringen, Nonlocal Continuum Field Theories, Springer Science & Business Media, Berlin, Heidelberg, 2002.
  • B. Craciun, On nonlocal thermoelsticity, Ann. St. Univ. Ovidus Constanta., vol. 5, pp. 29–36, 1996.
  • J. N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., vol. 45, no. 2-8, pp. 288–307, 2007. DOI: 10.1016/j.ijengsci.2007.04.004.
  • Y. J. Yu, X. G. Tian, and X. R. Liu, Size-dependent generalized thermoelasticity using Eringen’s nonlocal model, Eur. J. Mech. A/Solids., vol. 51, pp. 96–106, 2015. DOI: 10.1016/j.euromechsol.2014.12.005.
  • K. Wang, and B. Wang, Vibration modelling of carbon-nanotube based biosenors incorporating thermal and nonlocal effects, J. Vib. Control, vol. 22, no. 5, pp. 1405–1414, 2016. DOI: 10.1177/1077546314534718.
  • N. Das, N. Sarkar, and A. Lahiri, Reflection of plane waves from the stress-free isothermal and insulated boundaries of a nonlocal thermoelastic solid, Appl. Math. Model., vol. 73, pp. 526–544, 2019. DOI: 10.1016/j.apm.2019.04.028.
  • N. C. Das, A. Lahiri, S. Sarkar, and S. Basu, Reflection of generalized thermoelastic waves from isothermal and insulated boundaries of a half space, Comput. Math. Appl., vol. 56, no. 11, pp. 2795–2805, 2008. DOI: 10.1016/j.camwa.2008.05.042.
  • S. N. Iliopoulos, D. G. Aggelis, and D. Polyzos, Wave dispersion in fresh and hardened concrete through the prism of gradient elasticity, Int. J. Solids Struct., vol. 78-79, pp. 149–159, 2016. DOI: 10.1016/j.ijsolstr.2015.09.005.
  • G. Ahmadi, and K. Firoozbaksh, First strain-gradient theory of thermoelasticity, Int. J. Solids Struct., vol. 11, no. 3, pp. 339–345, 1975. DOI: 10.1016/0020-7683(75)90073-6.
  • E. C. Aifantis, On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., vol. 30, no. 10, pp. 1279–1299, 1992. DOI: 10.1016/0020-7225(92)90141-3.
  • E. C. Aifantis, On the gradient approach–relation to Eringen’s nonlocal theory, Int. J. Eng. Sci., vol. 49, no. 12, pp. 1367–1377, 2011. DOI: 10.1016/j.ijengsci.2011.03.016.
  • A. M. Zenkour, A. E. Abouelregal, K. A. Alnefaie, N. H. Abu-Hamdeh, and E. Aifantis, A refined nonlocal thermoelasticity theory for the vibration of nanobeams induced by ramp-type heating, Appl. Math. Comput., vol. 248, pp. 169–183, 2014. DOI: 10.1016/j.amc.2014.09.075.
  • A. Khurana, and S. K. Tomar, Wave propagation in nonlocal microstretch solid, Appl Math Model., vol. 40, pp. 5885–6875, 2016.
  • D. Singh, G. Kaur, and S. K. Tomar, Waves in nonlocal elastic solid with voids, J Elast., vol. 128, no. 1, pp. 85–114, 2017. DOI: 10.1007/s10659-016-9618-x.
  • C. W. Lim, G. Zhang, and J. N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids., vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • O. Rahmani, and A. A. Jandaghian, Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory, Appl. Phys. A., vol. 119, no. 3, pp. 1019–1032, 2015. DOI: 10.1007/s00339-015-9061-z.
  • F. Ebrahimi, and M. R. Barati, Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory, Appl. Phys. A., vol. 122, no. 9, pp. 843, 2016. DOI: 10.1007/s00339-016-0368-1.
  • F. Ebrahimi, and M. R. Barati, Hygrothermal effects on vibration characteristics of viscoelastic fg nanobeams based on nonlocal strain gradient theory, Compos. Struct., vol. 159, pp. 433–444, 2017. DOI: 10.1016/j.compstruct.2016.09.092.
  • D. K. Sharma, D. Thakur, V. Walia, and N. Sarkar, Free vibration analysis of a nonlocal thermoelastic hollow cylinder with diffusion, J. Therm. Stresses, vol. 43, no. 8, pp. 981–997, 2020. DOI: 10.1080/01495739.2020.1764425.
  • M. Marin, On weak solutions in elasticity of dipolar bodies with voids, J. Comput. Appl. Math., vol. 82, no. 1–2, pp. 291–297, 1997. DOI: 10.1016/S0377-0427(97)00047-2.
  • M. Marin, and O. Florea, On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies, An. St. Univ. Ovidius Constanta., vol. 22, no. 1, pp. 169–188, 2014. DOI: 10.2478/auom-2014-0014.
  • A. E. Abouelregal, and M. Marin, The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating, Mathematics., vol. 8, no. 7, pp. 1128, 2020. DOI: 10.3390/math8071128.
  • M. Marin, E. Carrera, and A. Öchsner, Some estimates on solutions of mixed problems for mixtures, Mech. Adv. Mater. Struct., vol. 27, no. 20, pp. 1776–1782, 2020. DOI: 10.1080/15376494.2018.1541490.
  • E. Carrera, A. Pagani, and R. Augello, Large deflection of composite beams by finite elements with node-dependent kinematics, Comput Mech., vol. 69, no. 6, pp. 1481–1500, 2022. DOI: 10.1007/s00466-022-02151-4.
  • M. I. A. Othman, R. S. Tantawi, and M. I. M. Hilal, Rotation and modified Ohm’s law influence on magneto-thermoelastic micropolar material with microtemperatures, Appl. Math. Comput., vol. 276, no. 5, pp. 468–480, 2016. DOI: 10.1016/j.amc.2015.12.031.
  • R. D. Borcherdt, Reflection and refraction of type-II S waves in elastic and inelastic media, Bull. Seismol. Soc. Am., vol. 67, no. 1, pp. 43–67, 1977. DOI: 10.1785/BSSA0670010043.
  • J. D. Achenbach, Wave Propagation in Elastic Solids, North Holland, New York, NY, 1973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.