361
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and mathematical model of a novel viscoelastic bio-inspired multi-dimensional vibration isolation device

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1135-1151 | Received 24 Jun 2022, Accepted 01 Oct 2022, Published online: 19 Oct 2022

References

  • Y. R. Dong, Z. D. Xu, Q. Q. Li, Y. S. Xu, and Z. H. Chen, Seismic behavior and damage evolution for retrofitted RC frames using haunch viscoelastic damping braces, Eng. Struct., vol. 199, pp. 109583, 2019. DOI: 10.1016/j.engstruct.2019.109583.
  • B. Meng, L. Li, W. Zhong, Z. Tan, and Q. Du, Improving anti-progressive collapse capacity of welded connection based on energy dissipation cover-plates, J. Constr. Steel Res., vol. 188, pp. 107051, 2022. DOI: 10.1016/j.jcsr.2021.107051.
  • J. P. Amezquita-Sanchez, A. Dominguez-Gonzalez, R. Sedaghati, R. de Jesus Romero-Troncoso, and R. A. Osornio-Rios, Vibration control on smart civil structures: A review, Mech. Adv. Mater. Struct., vol. 21, no. 1, pp. 23–38, 2014. DOI: 10.1080/15376494.2012.677103.
  • J. Dai, Z. D. Xu, P. P. Gai, and Z. W. Hu, Optimal design of tuned mass damper inerter with a Maxwell element for mitigating the vortex-induced vibration in bridges, Mech. Syst. Signal Process., vol. 148, pp. 107180, 2021. DOI: 10.1016/j.ymssp.2020.107180.
  • H. Li, A. Maghareh, J. Wilfredo Condori Uribe, H. Montoya, S. J. Dyke, and Z. Xu, An adaptive sliding mode control system and its application to real‐time hybrid simulation, Struct. Control Health, vol. 29, no. 1, pp. e2851, 2022. DOI: 10.1002/stc.2851.
  • Y. R. Dong, Z. D. Xu, K. Zeng, Y. Cheng, and C. Xu, Seismic behavior and cross-scale refinement model of damage evolution for RC shear walls, Eng. Struct., vol. 167, pp. 13–25, 2018. DOI: 10.1016/j.engstruct.2018.03.096.
  • Z. Chen, Y. Ding, Y. Shi, and Z. Li, A vertical isolation device with variable stiffness for long-span spatial structures, Soil Dyn. Earthq. Eng., vol. 123, pp. 543–558, 2019. DOI: 10.1016/j.soildyn.2019.05.023.
  • S. Wen, J. Jing, D. Cui, Z. Wu, W. Liu, and F. Li, Vibration isolation of a double-layered Stewart platform with local oscillators, Mech. Adv. Mater. Struct., pp. 1–9, 2021. DOI: 10.1080/15376494.2021.1983896.
  • D. Kamesh, R. Pandiyan, and A. Ghosal, Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft, J. Sound Vib., vol. 329, no. 17, pp. 3431–3450, 2010. DOI: 10.1016/j.jsv.2010.03.008.
  • Z. D. Xu, Q. Tu, and Y. F. Guo, Experimental study on vertical performance of multidimensional earthquake isolation and mitigation devices for long-span reticulated structures, J. Vib. Control, vol. 18, no. 13, pp. 1971–1985, 2012. DOI: 10.1177/1077546311429338.
  • W. H. Robinson, Lead‐rubber hysteretic bearings suitable for protecting structures during earthquakes, Earthquake Engng. Struct. Dyn., vol. 10, no. 4, pp. 593–604, 1982. DOI: 10.1002/eqe.4290100408.
  • Z. D. Xu, Z. H. Chen, X. H. Huang, C. Y. Zhou, Z. W. Hu, Q. H. Yang, and P. P. Gai, Recent advances in multi-dimensional vibration mitigation materials and devices, Front. Mater., vol. 6, pp. 143, 2019. DOI: 10.3389/fmats.2019.00143.
  • B. A. Bolt and R. A. Hansen, The upthrow of objects in earthquakes, Bull. Seismol. Soc. Am., vol. 67, no. 2, pp. 553–557, 1977. DOI: 10.1785/BSSA0670020553.
  • Z. D. Xu, P. P. Gai, H. Y. Zhao, X. H. Huang, and L. Y. Lu, Experimental and theoretical study on a building structure controlled by multi-dimensional earthquake isolation and mitigation devices, Nonlinear Dyn., vol. 89, no. 1, pp. 723–740, 2017. DOI: 10.1007/s11071-017-3482-5.
  • M. M. Pourmasoud, J. B. Lim, I. Hajirasouliha, and D. McCrum, Multi-directional base isolation system for coupled horizontal and vertical seismic excitations, J. Earthq. Eng., vol. 26, no. 3, pp. 1145–1170, 2022. DOI: 10.1080/13632469.2020.1713925.
  • M. S. Chalhoub and J. M. Kelly, Sliders and tension controlled reinforced elastomeric bearings combined for earthquake isolation, Earthq. Eng. Struct. Dyn., vol. 19, no. 3, pp. 333–344, 1990. DOI: 10.1002/eqe.4290190304.
  • Z. D. Xu, X. H. Huang, Y. F. Guo, and S. A. Wang, Study of the properties of a multi-dimensional earthquake isolation device for reticulated structures, J. Constr. Steel Res., vol. 88, pp. 63–78, 2013. DOI: 10.1016/j.jcsr.2013.05.002.
  • J. Suhara, T. Tamura, Y. Okada, and K. Umeki, Development of three dimensional seismic isolation device with laminated rubber bearing and rolling seal type air spring, ASME Pressure Vessels and Piping Conference, Prague, Czech Republic, August 17–22, vol. 46563, 2003. DOI: 10.1115/PVP2002-1430.
  • M. Kageyama, T. Iba, K. Umeki, T. Somaki, and S. Moro, Development of three-dimensional base isolation system with cable reinforcing air spring, Proceedings of the 17th International Conference on Structural Mechanics in Reactor Technology, August 17–22, Prague, Czech Republic, 2003.
  • B. Wei, Y. Zhuo, C. Li, and M. Yang, Parameter optimization of a vertical spring-viscous damper-Coulomb friction system, Shock Vib., vol. 2019, pp. 1–19, 2019. DOI: 10.1155/2019/5764946.
  • H. Zhang, X. Liang, Z. Gao, and X. Zhu, Seismic performance analysis of a large-scale single-layer lattice dome with a hybrid three-directional seismic isolation system, Eng. Struct., vol. 214, pp. 110627, 2020. DOI: 10.1016/j.engstruct.2020.110627.
  • S. Shang, Z. Wang, Y. Xiao, and X. Cui, Experimental and numerical study of the spring-asphalt 3D isolation structures under multi-component ground motions, Bull. Earthq. Eng., vol. 18, no. 5, pp. 2461–2496, 2020. DOI: 10.1007/s10518-019-00778-y.
  • Y. Xu, Z. D. Xu, Y. Q. Guo, H. Jia, X. Huang, and Y. Wen, Mathematical modeling and test verification of viscoelastic materials considering microstructures and ambient temperature influence, Mech. Adv. Mater. Struct., pp. 1–12, 2021. DOI: 10.1080/15376494.2021.1992689.
  • Z. H. He, Z. D. Xu, J. Y. Xue, X. J. Jing, Y. R. Dong, and Q. Q. Li, Experimental and theorical investigation on energy dissipation capacity of the viscoelastic limb-like-structure devices, Mech. Adv. Mater. Struct., pp. 1–14, 2022. DOI: 10.1080/15376494.2022.2051100.
  • Q. Q. Li, Z. D. Xu, Y. R. Dong, Z. H. He, J. X. He, and Y. Lu, Microstructure-based equivalent visco-hyperelastic model of viscoelastic damper, J. Eng. Mech., vol. 148, no. 4, pp. 04022014, 2022. DOI: 10.1061/(ASCE)EM.1943-7889.0002092.
  • Z. D. Xu, T. Ge, and A. Miao, Experimental and theoretical study on a novel multi-dimensional vibration isolation and mitigation device for large-scale pipeline structure, Mech. Syst. Signal Process., vol. 129, pp. 546–567, 2019. DOI: 10.1016/j.ymssp.2019.04.054.
  • N. Murota, M. Q. Feng, and G. Y. Liu, Earthquake simulator testing of base-isolated power transformers, IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1291–1299, 2006. DOI: 10.1109/TPWRD.2006.874586.
  • Z. D. Xu, S. A. Wang, and C. Xu, Experimental and numerical study on long-span reticulate structure with multidimensional high-damping earthquake isolation devices, J. Sound Vib., vol. 333, no. 14, pp. 3044–3057, 2014. DOI: 10.1016/j.jsv.2014.02.013.
  • Z. H. He, Z. D. Xu, J. Y. Xue, X. J. Jing, Y. R. Dong, and Q. Q. Li, Theoretical and experimental research of viscoelastic damping limb-like-structure device with coupling nonlinear characteristics, Int. J. Struct. Stab. Dyn., vol. 21, no. 12, pp. 2130002, 2021. DOI: 10.1142/S0219455421300020.
  • G. Jiang, X. Jing, and Y. Guo, A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties, Mech. Syst. Sig. Process., vol. 138, pp. 106552, 2020. DOI: 10.1016/j.ymssp.2019.106552.
  • X. Jing, The X-structure/mechanism approach to beneficial nonlinear design in engineering, Appl. Math. Mech.-Engl. Ed., vol. 43, no. 7, pp. 979–1000, 2022. DOI: 10.1007/s10483-022-2862-6.
  • Z. H. He, Z. D. Xu, J. Y. Xue, X. J. Jing, Y. R. Dong, and Q. Q. Li, Experimental study and mechanical model of viscoelastic damping limb-like-structure device with coupling nonlinear characteristics, Soil Dyn. Earthq. Eng., vol. 160, pp. 107385, 2022. DOI: 10.1016/j.soildyn.2022.107385.
  • G. Yan, S. Wang, H. Zou, L. Zhao, Q. Gao, and W. Zhang, Bio-inspired polygonal skeleton structure for vibration isolation: Design, modelling, and experiment, Sci. China Technol. Sci., vol. 63, no. 12, pp. 2617–2630, 2020. DOI: 10.1007/s11431-020-1568-8.
  • M. De-qing, Y. Ke-Ji, and C. Zi-chen, Design of an ultra-precision vibration isolation system by imitating the special organic texture of woodpecker’s brain, IEEE Conference on Robotics, Automation and Mechatronics, Vol. 1. IEEE, 2004.
  • R. Zeng, G. Wen, J. Zhou, et al., Limb-inspired bionic quasi-zero stiffness vibration isolator, Acta Mech. Sin., pp. 1–16, 2021.
  • Z. Wu, X. Jing, J. Bian, F. Li, and R. Allen, Vibration isolation by exploring bio-inspired structural nonlinearity, Bioinspir. Biomim., vol. 10, no. 5, pp. 056015, 2015. DOI: 10.1088/1748-3190/10/5/056015.
  • J. Bian and X. Jing, Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure, Mech. Syst. Signal Process., vol. 125, pp. 21–51, 2019. DOI: 10.1016/j.ymssp.2018.02.014.
  • A. Abourachid and E. Höfling, The legs: A key to bird evolutionary success, J. Ornithol., vol. 153, no. S1, pp. 193–198, 2012. DOI: 10.1007/s10336-012-0856-9.
  • R. H. Bonser, Branching out in locomotion: The mechanics of perch use in birds and primates, J. Exp. Biol., vol. 202, no. Pt 11, pp. 1459–1463, 1999. DOI: 10.1242/jeb.202.11.1459.
  • P. Provini, B. W. Tobalske, K. E. Crandell, and A. Abourachid, Transition from wing to leg forces during landing in birds, J. Exp. Biol., vol. 217, no. Pt 15, pp. 2659–2666, 2014. DOI: 10.1242/jeb.104588.
  • Q. Lin, Z. Y. Hao, and Y. H. Liu, Test and simulation for dry friction characteristics of metallic materials, J. Zhejiang Univ. (Eng. Sci.), vol. 43, no. 8, pp. 1501–1505, 2009 (in Chinese).
  • Q. Q. Li, Z. D. Xu, Y. R. Dong, Z. H. He, C. Zhu, and Y. Lu, Effects of mechanical nonlinearity of viscoelastic dampers on the seismic performance of viscoelasticlly damped structures, Soil Dyn. Earthq. Eng., vol. 150, pp. 106936, 2021. DOI: 10.1016/j.soildyn.2021.106936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.