96
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Novel approach combining two homogenization procedures for the analysis of nonwoven biocomposites

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1167-1181 | Received 25 Jul 2022, Accepted 01 Oct 2022, Published online: 29 Nov 2022

References

  • A. Lefeuvre, S. Garnier, L. Jacquemin, B. Pillain, and G. Sonnemann, Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050, Resour. Conserv. Recycl., vol. 125, pp. 264–272, 2017. DOI: 10.1016/j.resconrec.2017.06.023.
  • S. Karuppannan Gopalraj, and T. Kärki, A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis, SN Appl. Sci., vol. 2, no. 3, pp. 1–21, 2020. DOI: 10.1007/s42452-020-2195-4.
  • A. Regazzi, M. Teil, P. J. J. Dumont, B. Harthong, D. Imbault, R. Peyroux, and J.-L. Putaux, Microstructural and mechanical properties of biocomposites made of native starch granules and wood fibers, Compos. Sci. Technol., vol. 182, pp. 107755, 2019. DOI: 10.1016/j.compscitech.2019.107755.
  • V. Mazzanti, R. Pariante, A. Bonanno, O. Ruiz de Ballesteros, F. Mollica, and G. Filippone, Reinforcing mechanisms of natural fibers in green composites: role of fibers morphology in a PLA/hemp model system, Compos. Sci. Technol., vol. 180, pp. 51–59, 2019. DOI: 10.1016/j.compscitech.2019.05.015.
  • J. Bachmann, M. Wiedemann, and P. Wierach, Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres, Aerosp., vol. 5, no. 4, pp. 107, 2018. DOI: 10.3390/aerospace5040107.
  • L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, A review on natural fiber reinforced polymer composite and its applications, Int. J. Polym. Sci., vol. 2015, pp. 1–15, 2015. DOI: 10.1155/2015/243947.
  • J. Bachmann, X. Yi, H. Gong, X. Martinez, G. Bugeda, S. Oller, K. Tserpes, E. Ramon, C. Paris, P. Moreira, Z. Fang, Y. Li, Y. Liu, X. Liu, G. Xian, J. Tong, J. Wei, X. Zhang, J. Zhu, S. Ma, and T. Yu, Outlook on ecologically improved composites for aviation interior and secondary structures, CEAS Aeronaut. J., vol. 9, no. 3, pp. 533–543, 2018. DOI: 10.1007/s13272-018-0298-z.
  • J. Bachmann, X. Yi, K. Tserpes, C. Sguazzo, L. G. Barbu, B. Tse, C. Soutis, E. Ramón, H. Linuesa, and S. Bechtel, Towards a circular economy in the aviation sector using eco-composites for interior and secondary structures. Results and recommendations from the EU/China project ECO-COMPASS, Aerosp., vol. 8, no. 5, pp. 131, 2021. DOI: 10.3390/aerospace8050131.
  • J. P. Torres, L.-J. Vandi, M. Veidt, and M. T. Heitzmann, The mechanical properties of natural fibre composite laminates: a statistical study, Compos. Part A Appl. Sci. Manuf., vol. 98, pp. 99–104, 2017. DOI: 10.1016/j.compositesa.2017.03.010.
  • K. L. Pickering, M. G. A. Efendy, and T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 98–112, 2016. DOI: 10.1016/j.compositesa.2015.08.038.
  • V. Gigante, L. Aliotta, V. T. Phuong, M. B. Coltelli, P. Cinelli, and A. Lazzeri, Effects of waviness on fiber-length distribution and interfacial shear strength of natural fibers reinforced composites, Compos. Sci. Technol., vol. 152, pp. 129–138, 2017. DOI: 10.1016/j.compscitech.2017.09.008.
  • C. L. Pai, M. C. Boyce, and G. C. Rutledge, On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes, Polymer (Guildf)., vol. 52, no. 26, pp. 6126–6133, 2011. DOI: 10.1016/j.polymer.2011.10.055.
  • Y. He, N. Deng, B. Xin, and L. Liu, 3D microstructure reconstruction of nonwoven fabrics based on depth from focus, Micron., vol. 144, pp. 103035, 2021. DOI: 10.1016/j.micron.2021.103035.
  • Z. Qiu, and H. Fan, Nonlinear modeling of bamboo fiber reinforced composite materials, Compos. Struct., vol. 238, pp. 111976, 2020. DOI: 10.1016/j.compstruct.2020.111976.
  • M. Zhang, W. Lu, P. I. Gouma, Z. Xu, and L. Wang, Theoretical prediction of effective stiffness of nonwoven fibrous networks with straight and curved nanofibers, Compos. Part A Appl. Sci. Manuf., vol. 143, pp. 106311, 2021. DOI: 10.1016/j.compositesa.2021.106311.
  • F. Farukh, E. Demirci, B. Sabuncuoglu, M. Acar, B. Pourdeyhimi, and V. V. Silberschmidt, Mechanical behaviour of nonwovens: analysis of effect of manufacturing parameters with parametric computational model, Comput. Mater. Sci., vol. 94, no. C, pp. 8–16, 2014. DOI: 10.1016/j.commatsci.2013.12.040.
  • F. Farukh, E. Demirci, B. Sabuncuoglu, M. Acar, B. Pourdeyhimi, and V. V. Silberschmidt, Mechanical analysis of bi-component-fibre nonwovens: finite-element strategy, Compos. Part B Eng., vol. 68, pp. 327–335, 2015. DOI: 10.1016/j.compositesb.2014.09.003.
  • C. Naili, I. Doghri, T. Kanit, M. S. Sukiman, A. Aissa-Berraies, and A. Imad, Short fiber reinforced composites: unbiased full-field evaluation of various homogenization methods in elasticity, Compos. Sci. Technol., vol. 187, pp. 107942, 2020. DOI: 10.1016/j.compscitech.2019.107942.
  • F. Greco, P. Lonetti, R. Luciano, P. Nevone Blasi, and A. Pranno, Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites, Compos. Struct., vol. 189, pp. 688–699, 2018. DOI: 10.1016/j.compstruct.2018.01.014.
  • F. Levrero-Florencio, L. Margetts, E. Sales, S. Xie, K. Manda, and P. Pankaj, Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach, J. Mech. Behav. Biomed. Mater., vol. 61, pp. 384–396, 2016. DOI: 10.1016/j.jmbbm.2016.04.008.
  • F. Levrero-Florencio, and P. Pankaj, Using non-linear homogenization to improve the performance of macroscopic damage models of trabecular bone, Front. Physiol., vol. 9, pp. 545, 2018. DOI: 10.3389/fphys.2018.00545.
  • B. Werner, M. Ovesy, and P. K. Zysset, An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations, Int. J. Numer. Method Biomed. Eng., vol. 35, no. 5, pp. e3188, 2019. DOI: 10.1002/cnm.3188.
  • F. Rastellini, S. Oller, O. Salomón, and E. Oñate, Composite materials non-linear modelling for long fibre-reinforced laminates: continuum basis, computational aspects and validations, Comput. Struct., vol. 86, no. 9, pp. 879–896, 2008. DOI: 10.1016/j.compstruc.2007.04.009.
  • X. Martínez, S. Oller, and E. Barbero, Study of delamination in composites by using the serial/parallel mixing theory and a damage formulation. In Mechanical Response of Composites. Computational Methods in Applied Sciences, vol. 10, P. P. Camanho, C. G. Dávila, S. T. Pinho, and J. J. C. Remmers, Eds., Springer, Dordrecht, 2008. pp. 119–140.
  • M. A. Pérez, X. Martínez, S. Oller, L. Gil, F. Rastellini, and F. Flores, Impact damage prediction in carbon fiber-reinforced laminated composite using the matrix-reinforced mixing theory, Compos. Struct., vol. 104, pp. 239–248, 2013. DOI: 10.1016/j.compstruct.2013.04.021.
  • F. Otero, S. Oller, and X. Martinez, Multiscale computational homogenization: review and proposal of a new enhanced-first-order method, Arch. Computat. Methods Eng., vol. 25, no. 2, pp. 479–505, 2018. DOI: 10.1007/s11831-016-9205-0.
  • M. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans, MultiScale first-order and second-order computational homogenization of microstructures towards continua, Int. J. Mult. Comp. Eng., vol. 1, no. 4, pp. 371–386, 2003. DOI: 10.1615/IntJMultCompEng.v1.i4.40.
  • J. A. Hernández, J. Oliver, A. E. Huespe, M. A. Caicedo, and J. C. Cante, High-performance model reduction techniques in computational multiscale homogenization, Comput. Methods Appl. Mech. Eng., vol. 276, pp. 149–189, 2014. DOI: 10.1016/j.cma.2014.03.011.
  • E. J. Barbero, Introduction to Composite Materials Design, 3rd Ed. CRC Press, Boca Raton, Florida, USA, 2017. ISBN 9781138196803.
  • C. Truesdell, and R. Toupin, The Classical Field Theories,” Springer, Berlin, Heidelberg, 1960. pp. 226–858
  • E. Car, F. Zalamea, S. Oller, J. Miquel, and E. Oñate, Numerical simulation of fiber reinforced composite materials––two procedures, Int. J. Solids Struct., vol. 39, no. 7, pp. 1967–1986, 2002. DOI: 10.1016/S0020-7683(01)00240-2.
  • L. Neamtu, S. Oller, and E. Oñate, A generalized mixing theory elasto-damage plastic model for finite element analysis of composites, Proceedings of the 5th International Conference on Computational Plasticity (COMPLAS V), pp. 1214–1219. Barcelona, Spain, March 17–20, 1997.
  • X. Martinez, S. Oller, F. Rastellini, and A. H. Barbat, A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory, Comput. Struct., vol. 86, no. 15-16, pp. 1604–1618, 2008. DOI: 10.1016/j.compstruc.2008.01.007.
  • J. J. Granados, X. Martinez, N. Nash, C. Bachour, I. Manolakis, A. Comer, and D. Di Capua, Numerical and experimental procedure for material calibration using the serial/parallel mixing theory, to analyze different composite failure modes, Mech. Adv. Mater. Struct., vol. 28, no. 14, pp. 1415–1433, 2019. DOI: 10.1080/15376494.2019.1675106.
  • X. Martinez, F. Rastellini, S. Oller, F. Flores, and E. Oñate, Computationally optimized formulation for the simulation of composite materials and delamination failures, Compos. Part B Eng., vol. 42, no. 2, pp. 134–144, 2011. DOI: 10.1016/j.compositesb.2010.09.013.
  • A. Solis, S. Sanchez-Saez, X. Martinez, and E. Barbero-Pozuelo, Numerical analysis of interlaminar stresses in open-hole laminates under compression, Compos. Struct., vol. 217, pp. 89–99, 2019. Jun DOI: 10.1016/j.compstruct.2019.03.027.
  • P. SUQUET, Local and global aspects in the mathematical theory of plasticity, In: Modelling, Methods and Applications, Sawczuk, A. and Bianchi G. (eds.), Elsevier Applied Science Publishers, Essex, England, pp. 279–309, 1985.
  • T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., vol. 40, no. 13–14, pp. 3647–3679, 2003. DOI: 10.1016/S0020-7683(03)00143-4.
  • S. Oller, J. Miquel Canet, and F. Zalamea, Composite material behavior using a homogenization double scale method, J. Eng. Mech., vol. 131, no. 1, pp. 65–79, 2005. DOI: 10.1061/(ASCE)0733-9399(2005)131:1(65).
  • H. Badillo, and S. Oller, Numerical simulation of composite materials and structures using the unit cell homogenization approach, in V International Conference on Science and Technology of Composite Materials, 2009.
  • F. Otero, S. Oller, X. Martinez, and O. Salomón, Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations, Compos. Struct., vol. 122, pp. 405–416, 2015. DOI: 10.1016/j.compstruct.2014.11.041.
  • F. Otero, X. Martinez, S. Oller, and O. Salomón, An efficient multi-scale method for non-linear analysis of composite structures, Compos. Struct., vol. 131, pp. 707–719, 2015. DOI: 10.1016/j.compstruct.2015.06.006.
  • S. Zaghi, X. Martinez, R. Rossi, and M. Petracca, Adaptive and off-line techniques for non-linear multiscale analysis, Compos. Struct., vol. 206, pp. 215–233, 2018. DOI: 10.1016/j.compstruct.2018.08.022.
  • S. Nemat-Nasser, Averaging theorems in finite deformation plasticity, Mech. Mater., vol. 31, no. 8, pp. 493–523, 1999. DOI: 10.1016/S0167-6636(98)00073-8.
  • S. Oller, Nonlinear Dynamics of Structures, Springer International Publishing, Barcelona, Spain, 2014. DOI: 10.1007/978-3-319-05194-9.
  • J. Oliver, M. Cervera, S. Oller, and J. Lubliner, Isotropic damage models and smeared crack analysis of concrete, in Second International Conference on Computer Aided Analysis and Design of Concrete Structures, 1990. pp. 945–958.
  • X. Martinez, and S. Oller, Numerical simulation of matrix reinforced composite materials subjected to compression loads, Arch. Comput. Methods Eng., vol. 16, no. 4, pp. 357–397, 2009. DOI: 10.1007/s11831-009-9036-3.
  • E. Car, S. Oller, and E. Oñate, An anisotropic elastoplastic constitutive model for large strain analysis of fiber reinforced composite materials, Comput. Methods Appl. Mech. Eng., vol. 185, no. 2–4, pp. 245–277, 2000. DOI: 10.1016/S0045-7825(99)00262-5.
  • E. Car, S. Oller, and E. Oñate, A large strain plasticity model for anisotropic materials—composite material application, Int. J. Plast., vol. 17, no. 11, pp. 1437–1463, 2001. DOI: 10.1016/S0749-6419(00)00098-X.
  • G. Kretsis, A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics, Composites, vol. 18, no. 1, pp. 13–23, 1987. DOI: 10.1016/0010-4361(87)90003-6.
  • D. Scida, A. Bourmaud, and C. Baley, Influence of the scattering of flax fibres properties on flax/epoxy woven ply stiffness, Mater. Des., vol. 122, pp. 136–145, 2017. DOI: 10.1016/j.matdes.2017.02.094.
  • G. Coroller, A. Lefeuvre, A. Le Duigou, A. Bourmaud, G. Ausias, T. Gaudry, and C. Baley, Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite, Compos. Part A Appl. Sci. Manuf., vol. 51, pp. 62–70, 2013. DOI: 10.1016/j.compositesa.2013.03.018.
  • X. Martinez, F. Rastellini, S. Oller, F. Flores, and E. Oñate, Computationally optimized formulation for the simulation of composite materials and delamination failures, Compos. Part B Eng., vol. 42, no. 2, pp. 134–144, 2011. DOI: 10.1016/j.compositesb.2010.09.013.
  • R. Joffe, J. Andersons, and L. Wallström, Interfacial shear strength of flax fiber/thermoset polymers estimated by fiber fragmentation tests, J Mater Sci., vol. 40, no. 9–10, pp. 2721–2722, 2005. DOI: 10.1007/s10853-005-2115-4.
  • A. Le Duigou, P. Davies, and C. Baley, Exploring durability of interfaces in flax fibre/epoxy micro-composites, Compos. Part A Appl. Sci. Manuf., vol. 48, pp. 121–128, 2013. DOI: 10.1016/j.compositesa.2013.01.010.
  • A. Le Duigou, C. Baley, Y. Grohens, P. Davies, J.-Y. Cognard, R. Créach'cadec, and L. Sohier, A multi-scale study of the interface between natural fibres and a biopolymer, Compos. Part A Appl. Sci. Manuf., vol. 65, pp. 161–168, 2014. DOI: 10.1016/j.compositesa.2014.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.