149
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical and experimental buckling response of moderately thick and thick composite plates with various stiffener layouts

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2008-2028 | Received 13 Aug 2022, Accepted 10 Nov 2022, Published online: 26 Nov 2022

References

  • Y. K. Cheung, Finite Strip Method in Structural Analysis, Pergamon, Oxford, UK, 1976.
  • H. Amoushahi, M. Azhari, and A. Heidarpour, A fully discretized nonlinear finite strip formulation for pre-buckling and buckling analyses of viscoelastic plates subjected to time-dependent loading, Mech. Adv. Mater. Struct., vol. 22, no. 8, pp. 655–669, 2015. DOI: 10.1080/15376494.2013.828820.
  • H. Tanzadeh and H. Amoushahi, Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories, Eur. J. Mech. A-Solids, vol. 74, pp. 242–256, 2019. DOI: 10.1016/j.euromechsol.2018.11.013.
  • H. R. Ovesy and J. Fazilati, Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches, Compos. Struct., vol. 94, no. 3, pp. 1250–1258, 2012. DOI: 10.1016/j.compstruct.2011.11.009.
  • H. R. Ovesy, S. A. Ghannadpour, and E. Zia-Dehkordi, Buckling analysis of moderately thick composite plates and plate structures using an exact finite strip, Compos. Struct., vol. 95, pp. 697–704, 2013. DOI: 10.1016/j.compstruct.2012.08.009.
  • H. R. Ovesy, E. Zia-Dehkordi, and S. A. Ghannadpour, High accuracy post-buckling analysis of moderately thick composite plates using an exact finite strip, Comput. Struct., vol. 174, pp. 104–112, 2016. DOI: 10.1016/j.compstruc.2015.09.014.
  • S. A. Ghannadpour, H. R. Ovesy, and E. Zia-Dehkordi, Buckling and post-buckling behaviour of moderately thick plates using an exact finite strip, Comput. Struct., vol. 147, pp. 172–180, 2015. DOI: 10.1016/j.compstruc.2014.09.013.
  • M. Marjanović, N. Kolarević, M. Nefovska-Danilović, and M. Petronijević, Shear deformable dynamic stiffness elements for free vibration analysis of rectangular isotropic multilayer plates with arbitrary boundary conditions, Inter. Conf. Contemp. Achiev. Civil Eng., vol. 32, pp. 279–298, 2016. DOI: 10.14415/konferencijaGFS2016.027.
  • F. A. Fazzolari, M. Boscolo, and J. R. Banerjee, An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies, Comput. Struct., vol. 96, pp. 262–278, 2013. DOI: 10.1016/j.compstruct.2012.08.033.
  • F. A. Fazzolari, M. Boscolo, and J. R. Banerjee, Buckling of composite plate assemblies using higher order shear deformation theory—an exact method of solution, Thin-Walled Struct., vol. 71, pp. 18–34, 2013. DOI: 10.1016/j.tws.2013.04.017.
  • S. Goswami and W. Becker, A new rectangular finite element formulation based on higher order displacement theory for thick and thin composite and sandwich plates, WJM, vol. 03, no. 03, pp. 194–201, 2013. DOI: 10.4236/wjm.2013.33019.
  • I. A. Sadiq and H. S. Abdul-Ameer, Static analysis of laminated composite plate using new higher order shear deformation plate theory, J. Eng., vol. 23, no. 2, pp. 41–61, 2017.
  • C. H. Thai, L. V. Tran, D. T. Tran, T. Nguyen-Thoi, and H. Nguyen-Xuan, Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method, Appl. Math. Modell., vol. 36, no. 11, pp. 5657–5677, 2012. DOI: 10.1016/j.apm.2012.01.003.
  • M. Talha and B. N. Singh, Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Appl. Math. Modell., vol. 34, no. 12, pp. 3991–4011, 2010. DOI: 10.1016/j.apm.2010.03.034.
  • P. Shi, C. Dong, F. Sun, W. Liu, and Q. Hu, A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis, Comput. Struct., vol. 204, pp. 342–358, 2018. DOI: 10.1016/j.compstruct.2018.07.080.
  • E. Carrera and V. V. Zozulya, Carrera unified formulation (CUF) for the micropolar beams: Analytical solutions, Mech. Adv. Mater. Struct., vol. 28, no. 6, pp. 583–607, 2021. DOI: 10.1080/15376494.2019.1578013.
  • E. Carrera and V. V. Zozulya, Carrera unified formulation for the micropolar plates, Mech. Adv. Mater. Struct., vol. 29, no. 22, pp. 3163–3186, 2022. DOI: 10.1080/15376494.2021.1889726.
  • E. Carrera and V. V. Zozulya, Carrera unified formulation (CUF) for the micropolar plates and shells. I. Higher order theory, Mech. Adv. Mater. Struct., vol. 29, no. 6, pp. 773–795, 2022. DOI: 10.1080/15376494.2020.1793241.
  • E. Carrera and V. V. Zozulya, Carrera unified formulation (CUF) for the micropolar plates and shells. II. Complete linear expansion case, Mech. Adv. Mater. Struct., vol. 29, no. 6, pp. 796–815, 2022. DOI: 10.1080/15376494.2020.1793242.
  • P. T. Dat, D. V. Thom, and D. T. Luat, Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory, Vietnam J. Mech., vol. 38, no. 2, pp. 103–122, 2016. DOI: 10.15625/0866-7136/38/2/6730.
  • J. Li, Q. Huo, X. Li, X. Kong, and W. Wu, Vibration analyses of laminated composite beams using refined higher-order shear deformation theory, Int. J. Mech. Mater. Des., vol. 10, no. 1, pp. 43–52, 2014. DOI: 10.1007/s10999-013-9229-7.
  • A. Bhar, S. S. Phoenix, and S. K. Satsangi, Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective, Compos. Struct., vol. 92, no. 2, pp. 312–321, 2010. DOI: 10.1016/j.compstruct.2009.08.002.
  • A. Borković, N. Mrđa, and S. Kovačević, Dynamical analysis of stiffened plates using the compound strip method, Eng. Struct., vol. 50, pp. 56–67, 2013. DOI: 10.1016/j.engstruct.2012.10.013.
  • A. Borković, Buckling analysis of stiffened thin-walled sections under general loading conditions using the compound strip method, Proceedings of the Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Stirlingshire, UK, 2013.
  • B. H. Choi, M. O. Hwang, T. Y. Yoon, and C. H. Yoo, Experimental study of inelastic buckling strength and stiffness requirements for longitudinally stiffened panels, Eng. Struct., vol. 31, no. 5, pp. 1141–1153, 2009. DOI: 10.1016/j.engstruct.2009.01.010.
  • H. Matsunaga, Vibration and buckling of multilayered composite beams according to higher order deformation theories, J. Sound Vib., vol. 246, no. 1, pp. 47–62, 2001. DOI: 10.1006/jsvi.2000.3627.
  • R. Szilard, Theories and Applications of Plate Analysis, John Wiley & Sons, Hoboken, NJ, 2004.
  • D. Astm, 3039/D 3039M, Standard test method for tensile properties of polymer matrix composite materials, 2000.
  • M. Yazdani and G. H. Rahimi, The behaviour of GFRP-stiffened and-unstiffened shells under cyclic axial loading and unloading, J. Reinf. Plast. Compos., vol. 30, no. 5, pp. 440–445, 2011. DOI: 10.1177/0731684411398537.
  • M. Yazdani, H. Rahimi, A. A. Khatibi, and S. Hamzeh, An experimental investigation into the buckling of GFRP stiffened shells under axial loading, Sci. Res. Essays., vol. 4, no. 9, pp. 914–920, 2009.
  • M. Yazdani and G. H. Rahimi, The effects of helical ribs’ number and grid types on the buckling of thin-walled GFRP-stiffened shells under axial loading, J. Reinf. Plast. Compos., vol. 29, no. 17, pp. 2568–2575, 2010. DOI: 10.1177/0731684409355202.
  • A.S. Standard, D6641/D6641M-14, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture, W Conshohocken, 2014.
  • A.N. Multiphysics, Version 16.0., ANSYS, Inc., Canonsburg, PA, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.