289
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical study on the flexural mechanical properties of bioinspired composites with suture structures

, , , , , & show all
Pages 2680-2688 | Received 10 Sep 2022, Accepted 21 Dec 2022, Published online: 04 Jan 2023

References

  • Y. Chen, Y. Ma, F. Pan, C. Cui, Z. Zhang and B. Liu, Advances in mechanics of hierarchical composite materials, Compos. Sci. Technol., vol. 214, pp. 108970, 2021. DOI: 10.1016/j.compscitech.2021.108970.
  • H. Wang, S. Long, X. Yao, G. Lu, X. Zhang, and Q. Han, Analytical study on the low-velocity impact penetration of the fully-clamped foam-core composite sandwich panels, Compos. B, vol. 224, pp. 109214, 2021. DOI: 10.1016/j.compositesb.2021.109214.
  • S. Khosroshahi, S.A. Tsampas, and U. Galvanetto, Feasibility study on the use of a hierarchical lattice architecture for helmet liners, Mater. Today Commun., vol. 14, pp. 312–323, 2018. DOI: 10.1016/j.mtcomm.2018.02.002.
  • J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, and P. Fratzl, Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale, Science, vol. 309, no. 5732, pp. 275–278, 2005. DOI: 10.1126/science.1112255.
  • N. Lee, M.F. Horstemeyer, H. Rhee, B. Nabors, J. Liao, and L.N. Williams, Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak, J. R. Soc. Interface, vol. 11, no. 96, pp. 20140274, 2014. DOI: 10.1098/rsif.2014.0274.
  • Zhiku, Download free HD images of animals-Woodpecker, Wei Liao, Guangzhou, China [Online]. Available: https://www.clouding-ai.com/topic/details/70441/. Accessed: NOV. 10, 2022.
  • G.X. Gu, M. Takaffoli, A.J. Hsieh, and M.J. Buehler, Biomimetic additive manufactured polymer composites for improved impact resistance, Extreme Mech. Lett., vol. 9, pp. 317–323, 2016. DOI: 10.1016/j.eml.2016.09.006.
  • Z. Jia, Y. Yu, S. Hou, and L. Wang, Biomimetic architected materials with improved dynamic performance, J. Mech. Phys. Solids, vol. 125, pp. 178–197, 2019. DOI: 10.1016/j.jmps.2018.12.015.
  • S. Krauss, E. Monsonego-Orna, E. Zelzer, P. Fratzl, and R. Shahar, Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle, Adv. Mater., vol. 21, no. 4, pp. 407–412, 2009. DOI: 10.1002/adma.200801256.
  • S. Cui, Z. Lu, Z. Yang, and X. He, Numerical investigation on the enhanced damping behavior of bio-inspired nacreous composites by introducing interlocked structure, J. Mech. Behav. Biomed. Mater., vol. 119, pp. 104442, 2021. DOI: 10.1016/j.jmbbm.2021.104442.
  • N.S. Al-Maskari, D.A. McAdams, and J.N. Reddy, Modeling of a biological material nacre: Waviness toughness model, Mech. Adv. Mater. Struct., vol. 26, no. 9, pp. 789–795, 2019. DOI: 10.1080/15376494.2017.1410916.
  • Y. Li, C. Ortiz, and M.C. Boyce, Stiffness and strength of suture joints in nature, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 84, no. 6 Pt 1, pp. 062904, 2011. DOI: 10.1103/PhysRevE.84.062904.
  • C.D. Byron, J. Borke, J. Yu, D. Pashley, C.J. Wingard, and M. Hamrick, Effects of Increased muscle mass on mouse sagittal suture morphology and mechanics, Anat. Rec. A Discov. Mol. Cell Evol. Biol., vol. 279, no. 1, pp. 676–684, 2004. DOI: 10.1002/ar.a.20055.
  • E.J. Rayfield, Using finite-element analysis to investigate suture morphology: a case study using large carnivorous dinosaurs, Anat. Rec. A Discov. Mol. Cell. Evol. Biol., vol. 283, no. 2, pp. 349–365, 2005. DOI: 10.1002/ar.a.20168.
  • Y. Li, C. Ortiz, and M.C. Boyce, Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 85, no. 3 Pt 1, pp. 031901, 2012. DOI: 10.1103/PhysRevE.85.031901.
  • S. Wickramasinghe, C. Peng, R. Ladani, and P. Tran, Analysing fracture properties of bio-inspired 3D printed suture structures, Thin-Walled Struct., vol. 176, pp. 109317, 2022. DOI: 10.1016/j.tws.2022.109317.
  • E. Lin, Y. Li, J.C. Weaver, C. Ortiz, and M.C. Boyce, Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces, J. Mater. Res., vol. 29, no. 17, pp. 1867–1875, 2014. DOI: 10.1557/jmr.2014.175.
  • S. Haldar, T. Sain, and S. Ghosh, A novel high symmetry interlocking micro-architecture design for polymer composites with improved mechanical properties, Int. J. Solids Struct., vol. 124, pp. 161–175, 2017. DOI: 10.1016/j.ijsolstr.2017.06.030.
  • I.A. Malik, M. Mirkhalaf, and F. Barthelat, Bio-inspired “jigsaw”-like interlocking sutures: modeling, optimization, 3D printing and testing, J. Mech. Phys. Solids, vol. 102, pp. 224–238, 2017. DOI: 10.1016/j.jmps.2017.03.003.
  • I.A. Malik and F. Barthelat, Bioinspired sutured materials for strength and toughness: Pullout mechanisms and geometric enrichments, Int. J. Solids Struct., vol. 138, pp. 118–133, 2018. DOI: 10.1016/j.ijsolstr.2018.01.004.
  • E. Lin, Y. Li, C. Ortiz, and M.C. Boyce, 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior, J. Mech. Phys. Solids, vol. 73, pp. 166–182, 2014. DOI: 10.1016/j.jmps.2014.08.011.
  • Y. Hu, V. Birman, A. Deymier-Black, A.G. Schwartz, S. Thomopoulos, and G.M. Genin, Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone, Biophys. J., vol. 108, no. 2, pp. 431–437, 2015. DOI: 10.1016/j.bpj.2014.09.049.
  • P. Fratzl, H.S. Gupta, F.D. Fischer, and O. Kolednik, Hindered crack propagation in materials with periodically varying Young’s modulus-lessons from biological materials, Adv. Mater., vol. 19, no. 18, pp. 2657–2661, 2007. DOI: 10.1002/adma.200602394.
  • F. Barthelat and R. Rabiei, Toughness amplification in natural composites, J. Mech. Phys. Solids, vol. 59, no. 4, pp. 829–840, 2011. DOI: 10.1016/j.jmps.2011.01.001.
  • N. Suksangpanya, N.A. Yaraghi, D. Kisailus, and P. Zavattieri, Twisting cracks in Bouligand structures, J. Mech. Behav. Biomed. Mater., vol. 76, pp. 38–57, 2017. DOI: 10.1016/j.jmbbm.2017.06.010.
  • B. Ji and H. Gao, A study of fracture mechanisms in biological nano-composites via the virtual internal bond model, Mater. Sci. Eng. A, vol. 366, no. 1, pp. 96–103, 2004. DOI: 10.1016/j.msea.2003.08.121.
  • X. Jiang, J. Song, X. Qiang, H. Kolstein, and F. Bijlaard, Moisture absorption/desorption effects on flexural property of glass-fiber-reinforced polyester laminates: three-point bending test and coupled hygro-mechanical finite element analysis, Polymers, vol. 8, no. 8, pp. 290, 2016. DOI: 10.3390/polym8080290.
  • ASTM Standard D790-10A, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, 2010.
  • Q. Li, I. Magkiriadis, and J.J. Harrigan, Compressive strain at the onset of densification of cellular solids, J. Cell. Plast., vol. 42, no. 5, pp. 371–392, 2006. DOI: 10.1177/0021955X06063519.
  • M.-Y. He and J.W. Hutchinson, Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Struct., vol. 25, no. 9, pp. 1053–1067, 1989. DOI: 10.1016/0020-7683(89)90021-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.