100
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of personalized liner thickness on the stresses at the stump-prosthesis interface

, , , , &
Pages 2703-2711 | Received 30 Nov 2022, Accepted 22 Dec 2022, Published online: 02 Jan 2023

References

  • K. Ziegler-Graham, E.J. MacKenzie, P.L. Ephraim, T.G. Travison and R. Brookmeyer, Estimating the prevalence of limb loss in the United States: 2005 to 2050, Arch. Phys. Med. Rehabil., vol. 89, no. 3, pp. 422–429, 2008. DOI: 10.1016/j.apmr.2007.11.005.
  • C. W. Radcliffe, Functional Considerations in the Fitting of above-Knee Prostheses. Biomechanics Laboratory, University of California, 1955, 2(1), pp.35–60, PMID: 14351063.
  • J.C. Cagle, P.G. Reinhall, K.J. Allyn, J. McLean, P. Hinrichs, B.J. Hafner and J. E. Sanders, A finite element model to assess transtibial prosthetic sockets with elastomeric liners, Med. Biol. Eng. Comput., vol. 56, no. 7, pp. 1227–1240, 2018. DOI: 10.1007/s11517-017-1758-z.
  • D. Lacroix, and J. F. R. Patiño, Finite element analysis of donning procedure of a prosthetic transfemoral socket, Ann. Biomed. Eng., vol. 39, no. 12, pp. 2972–2983, 2011. DOI: 10.1007/s10439-011-0389-z.
  • Z. Meng, D. W. C. Wong, M. Zhang, and A. K. L. Leung, Analysis of compression/release stabilized transfemoral prosthetic socket by finite element modeling method, Med. Eng. Phys., vol. 83, pp. 123–129, 2020. DOI: 10.1016/j.medengphy.2020.05.007.
  • T. P. Chillale, N. H. Kim, and L. N. Smith, Mechanical and finite element analysis of an innovative orthopedic implant designed to increase the weight carrying ability of the femur and reduce frictional forces on an amputee’s stump, Mil. Med., vol. 184, no. Suppl 1, pp. 627–636, 2019. DOI: 10.1093/milmed/usy382.
  • Ismail Boudjemaa, A. Sahli, A. Benkhettou, and S. Benbarek, Preliminary results on the effects of orthopedic implant stiffness fixed to the cut end of the femur on the stress at the stump-prosthetic interface, Frattura ed Integrità Strutturale., vol. 15, no. 57, pp. 160–168, 2021. DOI: 10.3221/IGF-ESIS.57.13.
  • L. Lostado, Comparative analysis of healthy and Cam-type femoroacetabular impingement (FAI) human hip joints using the finite element method, Appl. Sci., vol. 11, no. 23, pp. 11101, 2021. DOI: 10.3390/app112311101.
  • F. Somovilla-Gómez, M. Corral-Bobadilla and R. Escribano-García, Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM, Biomech. Model. Mechanobiol., vol. 19, no. 1, pp. 351–387, 2020. DOI: 10.1007/s10237-019-01215-4.
  • W. McCartney, B. MacDonald, C.A. Ober, R. Lostado-Lorza and F.S. Gómez, Pelvic modelling and the comparison between plate position for double pelvic osteotomy using artificial cancellous bone and finite element analysis, BMC Vet Res., vol. 14, no. 1, pp. 1–5, 2018. DOI: 10.1186/s12917-018-1416-1.
  • S. Íñiguez-Macedo, F. Somovilla-Gómez, R. Lostado-Lorza, M. Corral-Bobadilla, M.Á. Martínez-Calvo and F. Sanz-Adán, The design of a knee prosthesis by finite element analysis, in Advances on Mechanics, Design Engineering and Manufacturing. Cham: Springer, 2017, pp. 447–455. DOI: 10.1007/978-3-319-45781-9_45.
  • R.L. Lorza, F.S. Gomez, R.F. Martinez, R.E. Garcia and M.C. Bobadilla, Improvement in the process of designing a new artificial human intervertebral lumbar disc combining soft computing techniques and the finite element method, in International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. Cham: Springer, 2016, pp. 223–232. DOI: 10.1007/978-3-319-47364-2_22.
  • F. Somovilla Gomez, R. Lostado Lorza, R. Fernandez Martinez, M. Corral Bobadilla, and R. Escribano Garcia. A proposed methodology for setting the finite element models based on healthy human intervertebral lumbar discs, in International Conference on Hybrid Artificial Intelligence Systems. Cham: Springer, 2016, pp. 621–633. DOI: 10.1007/978-3-319-32034-2_52.
  • F. Somovilla-Gómez, S. Iñiguez-Macedo, E. Jiménez-Ruiz, L. Muro-Fraguas, G. Gañán-Catalina, Á. Leciñana-Soldevilla, M. Corral-Bobadilla, C. Díaz-Bertrana-Sánchez and R. Lostado-Lorza, 3D-printed canine tibia model from clinical computed tomography data, in International Conference on the Digital Transformation in the Graphic Engineering. Cham: Springer, 2020, pp. 254–262. DOI: 10.1007/978-3-030-41200-5_28.
  • I. Hoogendoorn, J. Reenalda, B. F. Koopman, and J. S. Rietman, The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review, J Tissue Viability., vol. 26, no. 3, pp. 157–171, 2017. DOI: 10.1016/j.jtv.2017.04.003.
  • J. W. Steer, P. R. Worsley, M. Browne, and A. S. Dickinson, Predictive prosthetic socket design: Part 1—Population-based evaluation of transtibial prosthetic sockets by FEA-driven surrogate modelling, Biomech. Model. Mechanobiol., vol. 19, no. 4, pp. 1331–1346, 2020. DOI: 10.1007/s10237-019-01195-5.
  • F. M. Mbithi, A. J. Chipperfield, J. W. Steer, and A. S. Dickinson, Predictive control for an active prosthetic socket informed by FEA-based tissue damage risk estimation, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 2019, pp. 2073–2076, 2019. DOI: 10.1109/EMBC.2019.8857155.
  • R. S. Kistenberg, S. A. Kondor, S. Tawfik, and M. Terk, Medical Imaging Generated Dynamic Prosthetic Sockets. Georgia Institute of Technology, 2011, smartech.gatech.edu
  • W. C. Lee, M. Zhang, X. Jia, and J. T. Cheung, Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket, Med. Eng. Phys.., vol. 26, no. 8, pp. 655–662, 2004. DOI: 10.1016/j.medengphy.2004.04.010.
  • X. Jia, M. Zhang, and W. C. Lee, Load transfer mechanics between trans-tibial prosthetic socket and residual limb—Dynamic effects, J. Biomech., vol. 37, no. 9, pp. 1371–1377, 2004. DOI: 10.1016/j.jbiomech.2003.12.024.
  • S. Portnoy, Z. Yizhar, N. Shabshin, Y. Itzchak, A. Kristal, Y. Dotan-Marom, I. Siev-Ner and A. Gefen, Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee, J. Biomech., vol. 41, no. 9, pp. 1897–1909, 2008. DOI: 10.1016/j.jbiomech.2008.03.035.
  • C. L. Wu, C.-H. Chang, A.-T. Hsu, C.-C. Lin, S.-I. Chen and G.-L. Chang, A proposal for the pre‐evaluation protocol of below‐knee socket design-integration pain tolerance with finite element analysis, J. Chin. Instit. Eng., vol. 26, no. 6, pp. 853–860, 2003. DOI: 10.1080/02533839.2003.9670840.
  • M. L. Ju, H. Jmal, R. Dupuis, and E. Aubry, A comparison among polynomial model, reduced polynomial model and Ogden model for polyurethane foam. AMR., vol. 856, pp. 169–173, 2013. DOI: 10.4028/www.scientific.net/AMR.856.169.
  • A. F. A. Karim, H. Ismail, and Z. M. Ariff, Effects of Kenaf loading and alkaline treatment on properties of Kenaf filled natural rubber latex foam, JSM., vol. 47, no. 9, pp. 2163–2169, 2018. DOI: 10.17576/jsm-2018-4709-26.
  • A. Ballit, I. Mougharbel, H. Ghaziri, and T. T. Dao, Fast soft tissue deformation and stump-socket interaction toward a computer-aided design system for lower limb prostheses, Irbm., vol. 41, no. 5, pp. 276–285, 2020. DOI: 10.1016/j.irbm.2020.02.003.
  • A. S. Dickinson, J. W. Steer, and P. R. Worsley, Finite element analysis of the amputated lower limb: A systematic review and recommendations, Med. Eng. Phys., vol. 43, pp. 1–18, 2017. DOI: 10.1016/j.medengphy.2017.02.008.
  • M. R. M. Aliha, H. Ghazi, and F. Ataei, Experimental fracture resistance study for cracked bovine femur bone samples, Frattura ed Integrità Strutturale., vol. 13, no. 50, pp. 602–612, 2019. DOI: 10.3221/IGF-ESIS.50.51.
  • C. C. Lin, C. H. Chang, C. L. Wu, K. C. Chung, and I. C. Liao, Effects of liner stiffness for trans-tibial prosthesis: A finite element contact model, Med. Eng. Phys., vol. 26, no. 1, pp. 1–9, 2004. DOI: 10.1016/S1350-4533(03)00127-9.
  • Z. M. El Sallah, B. Smail, S. Abderahmane, B. B. Bouiadjra and S. Boualem, Numerical simulation of the femur fracture under static loading, Struct. Eng. Mech., vol. 60, no. 3, pp. 405–412, 2016. DOI: 10.12989/sem.2016.60.3.405.
  • B. Gasmi, S. Abderrahmene, B. Smail, and A. Benaoumeur, Initiation and propagation of a crack in the orthopedic cement of a THR using XFEM, Adv. Comput. Des., vol. 4, no. 3, pp. 295–305, 2019. DOI: 10.12989/acd.2019.4.3.295.
  • A. Ramos, and J. A. Simoes, Tetrahedral versus hexahedra finite elements in numerical modelling of the proximal femur, Med. Eng. Phys., vol. 28, no. 9, pp. 916–924, 2006. DOI: 10.1016/j.medengphy.2005.12.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.