218
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of energy absorption capacity of 3D filament wound composite tubes: experimental evaluation, numerical simulation, and acoustic emission monitoring

, , &
Pages 2727-2742 | Received 16 Jun 2022, Accepted 24 Dec 2022, Published online: 25 Jan 2023

References

  • W. Guan, and G. Gao, Crashworthiness analysis of shrink circular tube energy absorbers with anti-climbers under multiple loading cases, Mech. Adv. Mater. Struct., pp. 1–17, 2022. DOI: 10.1080/15376494.2022.2033892.
  • Z. Zhang, W. Sun, Y. Zhao, and S. Hou, Crashworthiness of different composite tubes by experiments and simulations, Compos. Part B. Eng., vol. 143, pp. 86–95, 2018. DOI: 10.1016/j.compositesb.2018.01.021.
  • H. Han, F. Taheri, and N. Pegg, Crushing behaviors and energy absorption efficiency of hybrid pultruded and ±45° braided tubes, Mech. Adv. Mater. Struct., vol. 18, no. 4, pp. 287–300, 2011. DOI: 10.1080/15376494.2010.506103.
  • C. J. McGregor, R. Vaziri, A. Poursartip, and X. Xiao, Simulation of progressive damage development in braided composite tubes under axial compression, Compos. Part A Appl. Sci. Manuf., vol. 38, no. 11, pp. 2247–2259, 2007. DOI: 10.1016/j.compositesa.2006.10.007.
  • Y. Gu, D. Zhang, Z. Zhang, J. Sun, S. Yue, G. Li, and K. Qian, Torsion damage mechanisms analysis of two-dimensional braided composite tubes with digital image correction and X-ray micro-computed tomography, Compos. Struct., vol. 256, pp. 113020, 2021. DOI: 10.1016/j.compstruct.2020.113020.
  • G. Ryzińska, M. David, G. Prusty, J. Tarasiuk, and S. Wroński, Effect of fibre architecture on the specific energy absorption in carbon epoxy composite tubes under progressive crushing, Compos. Struct., vol. 227, pp. 111292, 2019. DOI: 10.1016/j.compstruct.2019.111292.
  • H. Luo, Y. Yan, X. Meng, and C. Jin, Progressive failure analysis and energy-absorbing experiment of composite tubes under axial dynamic impact, Compos. Part B Eng., vol. 87, pp. 1–11, 2016. DOI: 10.1016/j.compositesb.2015.10.016.
  • H. Luo, X. Li, Y. Li, X. He, J. Ye, and Z. Li, Damage properties of pre-embedded connection of carbon fiber wound composite tubes, Mater. Today Commun., vol. 25, pp. 101525, 2020. DOI: 10.1016/j.mtcomm.2020.101525.
  • R. Rafiee, M. A. Torabi, and S. Maleki, Investigating structural failure of a filament-wound composite tube subjected to internal pressure: experimental and theoretical evaluation, Polym. Test., vol. 67, pp. 322–330, 2018. DOI: 10.1016/j.polymertesting.2018.03.020.
  • D. Shi, and X. Xiao, An enhanced continuum damage mechanics model for crash simulation of composites, Compos. Struct., vol. 185, pp. 774–785, 2018. DOI: 10.1016/j.compstruct.2017.10.084.
  • R. Higuchi, T. Okabe, A. Yoshimura, and T. Tay, Progressive failure under high-velocity impact on composite laminates: Experiment and phenomenological mesomodeling, Eng. Fract. Mech., vol. 178, pp. 346–361, 2017. DOI: 10.1016/j.engfracmech.2017.03.019.
  • M. Esa, P. Xue, M. Zahran, M. Abdelwahab, and M. Khalil, Novel strategy using crash tubes adaptor for damage levels manipulation and total weight reduction, Thin-Walled Struct., vol. 111, pp. 176–188, 2017. DOI: 10.1016/j.tws.2016.11.018.
  • V. G. Belardi, P. Fanelli, and F. Vivio, Structural analysis and optimization of anisogrid composite lattice cylindrical shells, Compos. Part B Eng., vol. 139, pp. 203–215, 2018. DOI: 10.1016/j.compositesb.2017.11.058.
  • A. Şık, E. Gürses, and B. Sabuncuoglu, Development of a procedure to model the mechanical behavior of composites with embedded element method by considering the matrix non-linearity, Compos. Struct., vol. 259, pp. 113400, 2021. DOI: 10.1016/j.compstruct.2020.113400.
  • H. Shen, Z. Tang, Y. Su, J. Liu, D. Yu, and R. Zhang, Characteristics of wave propagation, vibration transmission and acoustic emission in fluid-filled coaxial periodic shells, Mech. Adv. Mater. Struct., vol. 27, no. 3, pp. 196–208, 2020. DOI: 10.1080/15376494.2018.1472335.
  • M. Saeedifar, J. Mansvelder, R. Mohammadi, and D. Zarouchas, Using passive and active acoustic methods for impact damage assessment of composite structures, Compos. Struct., vol. 226, pp. 111252, 2019. DOI: 10.1016/j.compstruct.2019.111252.
  • A. Fernández, F. J. Rescalvo, A. Cruz, C. Abarkane, and J. M. Santiago, Acoustic emission analysis of raw bamboo subjected to tensile tests, Mech. Adv. Mater. Struct., vol. 28, no. 13, pp. 1389–1397, 2021. DOI: 10.1080/15376494.2019.1675105.
  • F. Mohamad, H. Hossein, P. Farzad, and M. Ahmadi Najaf Abadi, Composite materials damage characterization under quasi-static 3-point bending test using fuzzy C-means clustering, Appl. Mech. Mater., vol. 110, pp. 1221–1228, 2012.
  • D. Ranz, J. Cuartero, L. Castejón, and R. Miralbes, A study on interlaminar behavior of carbon/epoxy laminated curved beams by use of acoustic emission, Mech. Adv. Mater. Struct., vol. 27, no. 18, pp. 1609–1618, 2020. DOI: 10.1080/15376494.2018.1522559.
  • N. Beheshtizadeh, and A. Mostafapour, Processing of acoustic signals via wavelet & Choi-Williams analysis in three-point bending load of carbon/epoxy and glass/epoxy composites, Ultrasonics., vol. 79, pp. 1–8, 2017. DOI: 10.1016/j.ultras.2017.04.001.
  • E. H. Saidane, D. Scida, M.-J. Pac, and R. Ayad, Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fibre woven composites: Failure mechanism evaluation using acoustic emission analysis, Polym. Test., vol. 75, pp. 246–253, 2019. DOI: 10.1016/j.polymertesting.2019.02.022.
  • H. Q. Ali, I. E. Tabrizi, R. M. A. Khan, A. Tufani, and M. Yildiz, Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emission, Compos. Struct., vol. 230, pp. 111515, 2019. DOI: 10.1016/j.compstruct.2019.111515.
  • A. Huijer, C. Kassapoglou, and L. Pahlavan, Acoustic emission monitoring of carbon fibre reinforced composites with embedded sensors for in-situ damage identification, Sensors., vol. 21, no. 20, pp. 6926, 2021. DOI: 10.3390/s21206926.
  • M. B. Ameur, A.E. Mahi, J.-L. Rebiere, I. Gimenez, M. Beyaoui, M. Abdennadher, and M. Haddar, Investigation and identification of damage mechanisms of unidirectional carbon/flax hybrid composites using acoustic emission, Eng. Fract. Mech., vol. 216, pp. 106511, 2019. DOI: 10.1016/j.engfracmech.2019.106511.
  • M. Šofer, J. Cienciala, M. Fusek, P. Pavlíček, and R. Moravec, Damage analysis of composite CFRP tubes using acoustic emission monitoring and pattern recognition approach, Materials, vol. 14, no. 4, pp. 786, 2021. DOI: 10.3390/ma14040786.
  • A. B. Khalifa, M. Zidi, and L. Abdelwahed, Mechanical characterization of glass/vinylester ±55 filament wound pipes by acoustic emission under axial monotonic loading, C. R. Méc., vol. 340, no. 6, pp. 453–460, 2012. DOI: 10.1016/j.crme.2012.02.006.
  • A. Rabiee, and H. Ghasemnejad, Progressive crushing of polymer matrix composite tubular structures, OJCM., vol. 07, no. 01, pp. 14–48, 2017. DOI: 10.4236/ojcm.2017.71002.
  • L. Pickett, and V. Dayal, Effect of tube geometry and ply-angle on energy absorption of a circular glass/epoxy crush tube – A numerical study, Compos. Part B Eng., vol. 43, no. 8, pp. 2960–2967, 2012. DOI: 10.1016/j.compositesb.2012.05.040.
  • G. Lu, and T. X. Yu, Energy Absorption of Structures and Materials, Elsevier, New York, USA, 2003.
  • H. W. Song, X. W. Du, and G. F. Zhao, Energy absorption behavior of double-chamfer triggered glass/epoxy circular tubes, J. Compos. Mater., vol. 36, no. 18, pp. 2183–2198, 2002. DOI: 10.1177/0021998302036018515.
  • Y. Ren, H. Jiang, and Z. Liu, Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes, Int. J. Mech. Sci., vol. 157–158, pp. 1–12, 2019. DOI: 10.1016/j.ijmecsci.2019.04.024.
  • S. Alimirzaei, M. A. Najafabadi, A. Nikbakht, and L. Pahlavan, Damage mechanism characterization of ±35° and ±55° FW composite tubes using acoustic emission method, Int. J. Dam. Mech., vol. 31, no. 8, pp. 1230–1253, 2022.
  • ASTM D2584-18, Standard test Method for Ignition Loss of Cured Reinforced Resins, ASTM International, West Conshohocken, PA, USA, vol. 8.01, pp. 3, 2018.
  • ASTM E976-10, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, ASTM International, West Conshohocken, PA, USA, vol. 03.03, pp. 7, 2015.
  • M. Saeedifar, and D. Zarouchas, Damage characterization of laminated composites using acoustic emission: a review, Compos. Part B Eng., vol. 195, pp. 108039, 2020. DOI: 10.1016/j.compositesb.2020.108039.
  • C. K. Chui, Wavelets: A Tutorial in Theory and Applications, Academic Press Professional, Inc., San Diego, USA, 1993.
  • G. A. Oliver, J. L. J. Pereira, M. B. Francisco, and G. F. Gomes, The influence of delamination parameters on the wavelet based damage index in CFRP structures, Mech. Adv. Mater. Struct., pp. 1–11, 2022. DOI: 10.1080/15376494.2022.2028204.
  • B. Natarajan, S. Subramaniam, P. NavaneethaKrishnan, D. Karupannasamy, S. Chinnasamy, and S. Rajagopal, Augmentation of crashworthiness design of circular tubular structures by engraving grooves of varying depths, Mech. Adv. Mater. Struct., pp. 1–14, 2022. DOI: 10.1080/15376494.2022.2069307.
  • S. Alimirzaei, M. A. Najafabadi, and A. Khodaei, Characterization of the damage mechanism of glass/epoxy composite tubes under quasi-static axial loading using acoustic emission monitoring, Appl. Compos. Mater., vol. 29, no. 5, pp. 11911–1936, 2022.
  • H. Ma, and X.-L. Gao, A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers, Polymer, vol. 49, no. 19, pp. 4230–4238, 2008. DOI: 10.1016/j.polymer.2008.07.034.
  • M. I. Okereke, and A. I. Akpoyomare, A virtual framework for prediction of full-field elastic response of unidirectional composites, Comput. Mater. Sci., vol. 70, pp. 82–99, 2013. DOI: 10.1016/j.commatsci.2012.12.036.
  • T. Liu, X. Wu, B. Sun, W. Fan, W. Han, and H. Yi, Investigations of defect effect on dynamic compressive failure of 3D circular braided composite tubes with numerical simulation method, Thin-Walled Struct., vol. 160, pp. 107381, 2021. DOI: 10.1016/j.tws.2020.107381.
  • R. Hill, On discontinuous plastic states, with special reference to localized necking in thin sheets, J. Mech. Phys. Solids, vol. 1, no. 1, pp. 19–30, 1952. DOI: 10.1016/0022-5096(52)90003-3.
  • Z. Pan, X. Wu, and L. Wu, Temperature rise caused by adiabatic shear failure in 3D braided composite tube subjected to axial impact compression, J. Compos. Mater., vol. 54, no. 10, pp. 1305–1326, 2020. DOI: 10.1177/0021998319877558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.