159
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A strategy improving stiffness to resist local vibration of sandwich plates by extended Legendre higher-order model

, , , &
Pages 2784-2801 | Received 04 Dec 2022, Accepted 26 Dec 2022, Published online: 09 Jan 2023

References

  • A. Garg, M. O. Belarbi, H. D. Chalak, and A. Chakrabarti, A review of the analysis of sandwich FGM structures, Compos. Struct., vol. 258, pp. 113427, 2021. DOI: 10.1016/j.compstruct.2020.113427.
  • Z. Z. Quan, A, Wu, M. Keefe, X. Qin, J. Yu, J. Suhr, J.-H. Byun, B.-S. Kim and T.-W. Chou, Additive manufacturing of multidirectional preforms for composites: Opportunities and challenges, Mater. Today, vol. 18, no. 9, pp. 503–512, 2015. DOI: 10.1016/j.mattod.2015.05.001.
  • J. Frketic, T. Dickens, and S. Ramakrishnan, Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing, Additive Manufact., vol. 14, pp. 69–86, 2017. DOI: 10.1016/j.addma.2017.01.003.
  • S. Zhao, Z. Zhao, Z. Yang, L. L. Ke, S. Kitipornchai, and J. Yang, Functionally graded graphene reinforced composite structures: A review, Eng. Struct., vol. 210, pp. 110339, 2020. DOI: 10.1016/j.engstruct.2020.110339.
  • N. V. Nguyen, H. Nguyen-Xuan, T. N. Nguyen, J. Kang, and J. Lee, A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement, Compos. Struct., vol. 259, pp. 113213, 2021. DOI: 10.1016/j.compstruct.2020.113213.
  • N. V. Nguyen, and J. Lee, On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates, Int. J. Mech. Sci., vol. 197, pp. 106310, 2021. DOI: 10.1016/j.ijmecsci.2021.106310.
  • H. G. Allen, Analysis and Design of Structural Sandwich Panels, Pergamon, London, 1969.
  • A. K. Noor, Free vibration of multilayered composite plates, AIAA J., vol. 11, no. 7, pp. 1038–1039, 1973. DOI: 10.2514/3.6868.
  • S. Srinivas, and A. K. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates, Int. J. Solids Struct., vol. 6, no. 11, pp. 1463–1481, 1970. DOI: 10.1016/0020-7683(70)90076-4.
  • A. S. Sayyad, and Y. M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature, Compos. Struct., vol. 171, pp. 486–504, 2017. DOI: 10.1016/j.compstruct.2017.03.053.
  • M. S. A. Houari, A. Tounsi, A. Bessaim, and S. R. Mahmoud, A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates, Steel Compos. Struct., vol. 22, no. 2, pp. 257–276, 2016. DOI: 10.12989/scs.2016.22.2.257.
  • A. Draoui, M. Aicha, M. Zidour, A. Tounsi, and B. Adim, Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), JNanoR., vol. 57, pp. 117–135, 2019. DOI: 10.4028/www.scientific.net/JNanoR.57.117.
  • C. H. Thai, A. Zenkour, M. A. Wahab, and X. H. Nguyen, A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis, Compos. Struct., vol. 139, pp. 77–95, 2016. DOI: 10.1016/j.compstruct.2015.11.066.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech.-Trans. ASME., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • A. K. Nayak, S. S. J. Moy, and R. A. Shenoi, Free vibration analysis of composite sandwich plates based on Reddy’s higher-order theory, Compos. B., vol. 33, no. 7, pp. 505–519, 2002. DOI: 10.1016/S1359-8368(02)00035-5.
  • T. V. Vu, J. L. Curiel-Sosa, and T. Q. Bui, A refined sin hyperbolic shear deformation theory for sandwich FG plates by enhanced meshfree with new correlation function, Int. J. Mech. Mater. Des., vol. 15, no. 3, pp. 647–669, 2019. DOI: 10.1007/s10999-018-9430-9.
  • M. Cho, and J. Oh, Higher order zig-zag theory for fully coupled thermo-electric- mechanical smart composite plates, Int. J. Solids Struct., vol. 41, no. 5-6, pp. 1331–1356, 2004. DOI: 10.1016/j.ijsolstr.2003.10.020.
  • M. T. Song, S. Kitipornchai, and J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Struct., vol. 159, pp. 579–588, 2017. DOI: 10.1016/j.compstruct.2016.09.070.
  • D. H. Li, R. P. Wang, R. L. Qian, Y. Liu, and G. H. Qing, Static response and free vibration analysis of the composite sandwich structures with multi-layer cores, Int. J. Mech. Sci., vol. 111-112, pp. 101–115, 2016. DOI: 10.1016/j.ijmecsci.2016.04.002.
  • E. Carrera, An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Comp. Struct., vol. 50, no. 2, pp. 183–198, 2000. DOI: 10.1016/S0263-8223(00)00099-4.
  • E. Carrera, F. A. Fazzolari, and L. Demasi, Vibration analysis of anisotropic simply supported plates by using variable kinematic and Rayleigh-Ritz method, J. Vib. Acoust., vol. 133, no. 6, pp. 061017, 2011. DOI: 10.1115/1.4004680.
  • E. Carrera, and S. Valvano, A variable ESL/LW kinematic plate formulation for free-vibration thermoelastic analysis of laminated structures, J. Thermal Stress., vol. 42, no. 4, pp. 452–474, 2019. DOI: 10.1080/01495739.2018.1474513.
  • E. Carrera, Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates, Aiaa J., vol. 43, no. 10, pp. 2232–2242, 2005. DOI: 10.2514/1.11230.
  • E. Carrera, A study of transverse normal stress effect on vibration of multilayered plates and shells, J. Sound Vib., vol. 225, no. 5, pp. 803–829, 1999. DOI: 10.1006/jsvi.1999.2271.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, ARCO., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • D. S. Mashat, E. Carrera, A. M. Zenkour, S. A. Al Khateeb, and M. Filippi, Free vibration of FGM layered beams by various theories and finite elements, Comp. B. Eng., vol. 59, pp. 269–278, 2014. DOI: 10.1016/j.compositesb.2013.12.008.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, Effects of thickness stretching in functionally graded plates and shells, Comp. B. Eng., vol. 42, no. 2, pp. 123–133, 2011. DOI: 10.1016/j.compositesb.2010.10.005.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, Refined and advanced models for multilayered plates and shells embedding functionally graded material layers, Mech. Adv. Mater. Struct., vol. 17, no. 8, pp. 603–621, 2010. DOI: 10.1080/15376494.2010.517730.
  • J. L. Mantari, I. A. Ramos, E. Carrera, and M. Petrolo, Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation, Compos. B. Eng., vol. 89, pp. 127–142, 2016. DOI: 10.1016/j.compositesb.2015.11.025.
  • A. M. A. Neves, A.J.M. Ferreira, E. Carrera, C.M.C. Roque, M. Cinefra, R.M.N. Jorge and C.M.M. Soares, A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Compos. B. Eng., vol. 43, no. 2, pp. 711–725, 2012. DOI: 10.1016/j.compositesb.2011.08.009.
  • A. M. A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, R.M.N. Jorge and C.M.M. Soares, Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations, Eur. J. Mech. A-Solid., vol. 37, pp. 24–34, 2013. DOI: 10.1016/j.euromechsol.2012.05.005.
  • E. Carrera, and M. D. Demirbas, Evaluation of bending and post-buckling behavior of thin-walled FG beams in geometrical nonlinear regime with CUF, Compos. Struct., vol. 275, pp. 114408, 2021. DOI: 10.1016/j.compstruct.2021.114408.
  • F. A. Fazzolari, and E. Carrera, Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions, J. Therm. Stresses., vol. 37, no. 12, pp. 1449–1481, 2014. DOI: 10.1080/01495739.2014.937251.
  • M. Cinefra, E. Carrera, and S. Brischetto, Refined shell models for the vibration analysis of multiwalled carbon nanotubes, Mech. Adv. Mater. Struct., vol. 18, no. 7, pp. 476–483, 2011. DOI: 10.1080/15376494.2011.604601.
  • S. Khosravani, M. H. Sadr, E. Carrera, and A. Pagani, Synthesis, experimental testing and multi-scale modelling of graphene foam/epoxy composite, Mech. Adv. Mater. Struct., pp. 1–10, 2022. DOI: 10.1080/15376494.2022.2055242.
  • E. Carrera, A. G. de Miguel, and A. Pagani, Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications, Int. J. Mech. Sci., vol. 120, pp. 286–300, 2017. DOI: 10.1016/j.ijmecsci.2016.10.009.
  • A. Pagani, A. G. de Miguel, M. Petrolo, and E. Carrera, Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions, Compos. Struct., vol. 156, pp. 78–92, 2016. DOI: 10.1016/j.compstruct.2016.01.095.
  • Y. Yan, E. Carrera, A. G. de Miguel, A. Pagani, and Q. W. Ren, Meshless analysis of metallic and composite beam structures by advanced hierarchical models with layer-wise capabilities, Compos. Struct., vol. 200, pp. 380–395, 2018. DOI: 10.1016/j.compstruct.2018.05.114.
  • Y. Yan, E. Carrera, and A. Pagani, Free vibration analysis of curved metallic and composite beam structures using a novel variable-kinematic DQ method, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 3743–3762, 2022. DOI: 10.1080/15376494.2021.1909784.
  • E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, ARCO., vol. 9, no. 2, pp. 87–140, 2002. DOI: 10.1007/BF02736649.
  • A. S. Benson, and J. Mayers, General instability and face wrinkling of sandwich plates: Unified theory and applications, AIAA J., vol. 5, no. 4, pp. 729–739, 1967. DOI: 10.2514/3.4054.
  • Z. P. Sun, L. G. Philippe, and S. S. Kahina, Global/local analytical and numerical free vibration analysis of sandwich columns, Compos. Struct., vol. 243, pp. 112225, 2020. DOI: 10.1016/j.compstruct.2020.112225.
  • X. Wang, and X. Liang, Free vibration of soft-core sandwich panels with general boundary conditions by harmonic quadratic element method, Thin-Walled Struc., vol. 113, pp. 253–261, 2017. DOI: 10.1016/j.tws.2016.12.004.
  • K. Gao, W. Gao, D. Chen, and J. Yang, Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation, Compos. Struct., vol. 204, pp. 831–846, 2018. DOI: 10.1016/j.compstruct.2018.08.013.
  • J. Yang, D. Chen, and S. Kitipornchai, Buckling and free vibration analyses of function- ally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Compos. Struct., vol. 193, pp. 281–294, 2018. DOI: 10.1016/j.compstruct.2018.03.090.
  • N. V. Nguyen, H. X. Nguyen, and L. Jaehong, A quasi-three- dimensional isogeometric model for porous sandwich functionally graded plates reinforced with graphene nanoplatelets, J. Sandwich Struct. Mater., vol. 1, pp. 1–37, 2021.
  • M. Arefi, and F. Najafitabar, Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method, Thin-Walled Struct., vol. 158, pp. 107200, 2021. DOI: 10.1016/j.tws.2020.107200.
  • A. R. Saidi, R. Bahaadini, and K. Majidi-Mozafari, On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading, Comp. B. Eng., vol. 164, pp. 778–799, 2019. DOI: 10.1016/j.compositesb.2019.01.074.
  • K. Li, D. Wu, X. Chen, J. Cheng, Z. Liu, W. Gao and M. Liu, Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets, Comp. Struct., vol. 204, pp. 114–130, 2018. DOI: 10.1016/j.compstruct.2018.07.059.
  • R. Ansari, R. Hassani, R. Gholami, and H. Rouhi, Free vibration analysis of postbuckled arbitrary-shaped FG-GPL-reinforced porous nanocomposite plates, Thin-Walled Struct., vol. 163, pp. 107701, 2021. DOI: 10.1016/j.tws.2021.107701.
  • J. R. Cho, and D. Y. Ha, Optimal tailoring of 2d volume-fraction distributions for heat-resisting functionally graded materials using FDM, Comput. Methods. Appl. Mech. Eng., vol. 191, no. 29-30, pp. 3195–3211, 2002. DOI: 10.1016/S0045-7825(02)00256-6.
  • Q. X. Lieu, D. Lee, J. Kang, and J. Lee, NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates, Mech. Adv. Mat. Struct., vol. 26, no. 12, pp. 1064–1080, 2019. DOI: 10.1080/15376494.2018.1430273.
  • R. Perera, A. Arteaga, and A. D. Diego, Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement, Comp. Struct., vol. 92, no. 5, pp. 1169–1175, 2010. DOI: 10.1016/j.compstruct.2009.10.027.
  • R. A. Mozumder, B. Roy, and A. I. Laskar, Support vector regression approach to predict the strength of FRP confined concrete, Arab. J. Sci. Eng., vol. 42, no. 3, pp. 1129–1146, 2017. DOI: 10.1007/s13369-016-2340-y.
  • M. Marks, D. Jóźwiak-Niedźwiedzka, M. A. Glinicki, J. Olek, and M. Marks, Assessment of scaling durability of concrete with CFBC ash by automatic classification rules, J. Mater. Civ. Eng., vol. 24, no. 7, pp. 860–867, 2012. DOI: 10.1061/(ASCE)MT.1943-5533.0000464.
  • X. Liu, T. Q. Liu, and P. Feng, Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution, Compos. Struct., vol. 284, pp. 115184, 2022. DOI: 10.1016/j.compstruct.2022.115184.
  • J. S. Chou, C. K. Chiu, M. Fahmoud, and I. Ai-Taharwa, Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques, J. Comput. Civil Eng., vol. 30, no. 4, pp. 1–11, 2012.
  • W. Dong, Y. Huang, B. Lehane, and G. Ma, XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring, Automat. Construct., vol. 114, pp. 103155, 2020. DOI: 10.1016/j.autcon.2020.103155.
  • D. T. T. Do, S. Lee, and J. Lee, A modified differential evolution algorithm for tensegrity structures, Compos. Struct., vol. 158, pp. 11–19, 2016. DOI: 10.1016/j.compstruct.2016.08.039.
  • J. Xue, and B. A. Shen, A novel swarm intelligence optimization approach: Sparrow search algorithm, Syst. Sci. Control Eng., vol. 8, no. 1, pp. 22–34, 2020. DOI: 10.1080/21642583.2019.1708830.
  • K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons Ltd, New York, 2001.
  • S. Kitipornchai, D. Chen, and J. Yang, Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets, Mater. Design, vol. 116, pp. 656–665, 2017. DOI: 10.1016/j.matdes.2016.12.061.
  • Z. Wu, and W. J. Chen, A quadrilateral element based on refined global-local higher-order theory for coupling bending and extension thermo-elastic multilayered plates, Int. J. Solids Struct., vol. 44, no. 10, pp. 3187–3217, 2007.
  • F. Moleiro, E. Carrera, E. Zappino, G. Li, and M. Cinefra, Layerwise mixed elements with node-dependent kinematics for global–local stress analysis of multilayered plates using high-order Legendre expansions, Comput. Methods. Appl. Mech. Eng., vol. 359, pp. 112764, 2020. DOI: 10.1016/j.cma.2019.112764.
  • X. Y. Li, and D. Liu, Generalized laminate theories based on double superposition hypothesis, Int. J. Numer. Methods. Eng., vol. 40, no. 7, pp. 1197–1212, 1997. DOI: 10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-B.
  • Y. S. Xiao, Z. Wu, J. Zhou, Z. L. Liu, X. Y. Zhang, and X. H. Ren, Influence of aperture shape on dynamic behaviors of sandwich plates by means of improved isogeometric analysis and experimental tests, Compos. Struct., vol. 290, pp. 115553, 2022. DOI: 10.1016/j.compstruct.2022.115553.
  • T. J. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement, Comput. Methods. Appl. Mech. Eng., vol. 194, no. 39-41, pp. 4135–4195, 2005. DOI: 10.1016/j.cma.2004.10.008.
  • T. Q. Chen, and C. Guestrin, XGBoost: A scalable tree boosting system, 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 785–794, 2016.
  • D. Nielsen, Tree boosting with xgboost-why does xgboost win “every” machine learning competition? Master’s thesis, NTNU, 2016.
  • J. H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001. DOI: 10.1214/aos/1013203451.
  • S. Kapuria, P.C. Dumir, and N. K. Jain, Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams, Compos. Struct., vol. 64, no. 3-4, pp. 317–327, 2004. DOI: 10.1016/j.compstruct.2003.08.013.
  • G. Giunta, F. Biscani, S. Belouettar, A.J.M. Ferreira, and E. Carrera, Free vibration analysis of composite beams via refined theories, Compos. B. Eng., vol. 44, no. 1, pp. 540–552, 2013. DOI: 10.1016/j.compositesb.2012.03.005.
  • Y. Yan, A. Pagani, and E. Carrera, Exact solutions for free vibration analysis of laminated, box and sandwich beams by refined layer-wise theory, Compos. Struct., vol. 175, pp. 28–45, 2017. DOI: 10.1016/j.compstruct.2017.05.003.
  • Q. Li, V. Iu, and K. Kou, Three-dimensional vibration analysis of functionally graded material sandwich plates, J. Sound Vib., vol. 311, no. 1-2, pp. 498–515, 2008. DOI: 10.1016/j.jsv.2007.09.018.
  • S. Natarajan, and G. Manickam, Bending and vibration of functionally graded material sandwich plates using an accurate theory, Finite Elem. Anal. Des., vol. 57, pp. 32–42, 2012. DOI: 10.1016/j.finel.2012.03.006.
  • N. Grover, D. Maiti, and B. Singh, A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates, Compos. Struct., vol. 95, pp. 667–675, 2013. DOI: 10.1016/j.compstruct.2012.08.012.
  • J. Mantari, A. Oktem, and C.G. Soares, Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory, Compos. Struct., vol. 94, no. 1, pp. 37–49, 2011. DOI: 10.1016/j.compstruct.2011.07.020.
  • V.H. Nguyen, T.K. Nguyen, H.T. Thai, and T.P. Vo, A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates, Compos. B. Eng., vol. 66, pp. 233–246, 2014. DOI: 10.1016/j.compositesb.2014.05.012.
  • K. Pradeep, K.D. Ashish, and S.K. Makarand, An ensemble decision tree methodology for remaining useful life prediction of spur gears under natural pitting progression, Struct. Health Monit., vol. 9, no. 3, pp. 854–872, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.