275
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Stacking design of uniaxial/biaxial braided composite tube under low-velocity impact load

&
Pages 2901-2914 | Received 18 Oct 2022, Accepted 03 Jan 2023, Published online: 16 Jan 2023

References

  • A. Gholami, and G. W. Melenka, Finite element analysis of 2-D tubular braided composite based on geometrical models to study mechanical performances, Mech. Adv. Mater. Struct., vol. 29, pp. 1–17, 2021.
  • Z. Cui, Q. Liu, Y. Sun, and Q. Li, On crushing responses of filament winding CFRP/aluminum and GFRP/CFRP/aluminum hybrid structures, Compos. B Eng., vol. 200, pp. 108341, 2020.
  • Z. Xiao, F. Mo, D. Zeng, and C. Yang, Experimental and numerical study of hat shaped CFRP structures under quasi-static axial crushing, Compos. Struct., vol. 249, pp. 112465, 2020.
  • H. Jiang, F. Cheng, Y. Hu, Y. Ji, X. Hu, and Y. Ren, Micro-mechanics modeling of compressive strength and elastic modulus enhancements in unidirectional CFRP with aramid pulp micro/nano-fiber interlays, Compos. Sci. Technol., vol. 206, pp. 108664, 2021.
  • M. Umair, K. Shaker, M. U. Javaid, M. Hussain, M. Kashif, and Y. Nawab, Effect of weaving patterns on damage resistance of 3D woven jointless T and H shaped reinforcements, Mech. Adv. Mater. Struct., vol. 29, no. 1, pp. 104–117, 2022.
  • Q. Liu, J. Ma, Z. He, Z. Hu, and D. Hui, Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes, Compos. B Eng., vol. 121, pp. 134–144, 2017.
  • W. Li, X. An, Q. Zheng, F. Yang, and H. Fan, Hierarchical design, manufacture and crushing behaviors of CFRP tubular energy absorbers, Thin-Walled Struct., vol. 140, pp. 416–425, 2019.
  • F. E. Oz, N. Ersoy, M. Mehdikhani, and S. V. Lomov, Multi-instrument in-situ damage monitoring in quasi-isotropic CFRP laminates under tension, Compos. Struct., vol. 196, pp. 163–180, 2018.
  • A. A. Lukyanchuk, A. G. Kalinin, A. V. Pankov, and Y. A. Svirskiy, Fracture criterion for tested CFRP specimens under tension, Procedia Struct. Integr., vol. 13, pp. 1285–1290, 2018.
  • F. Z. Hu, and C. Soutis, Strength prediction of patch-repaired CFRP laminates loaded in compression, Compos. Sci. Technol., vol. 60, no. 7, pp. 1103–1114, 2000.
  • D. D. R. Cartie, and P. E. Irving, Effect of resin and fibre properties on impact and compression after impact performance of CFRP, Compos. Part A-Appl. Sci. Manuf., vol. 33, no. 4, pp. 483–493, 2002.
  • R. M. Guedes, M. F. S. F. De Moura, and F. J. Ferreira, Failure analysis of quasi-isotropic CFRP laminates under high strain rate compression loading, Compos. Struct., vol. 84, no. 4, pp. 362–368, 2008.
  • M. Emadi, H. Beheshti, and M. Heidari-Rarani, Thickness effect study on the crushing characteristics of aluminum and composite tubes: Numerical analysis and multi-objective optimization, Mech. Adv. Mater. Struct., vol. 28, no. 24, pp. 2585–2594, 2021.
  • R. D. Hussein, D. Ruan, and G. Lu, An analytical model of square CFRP tubes subjected to axial compression, Compos. Sci. Technol., vol. 168, pp. 170–178, 2018.
  • H. Han, F. Taheri, and N. Pegg, Crushing behaviors and energy absorption efficiency of hybrid pultruded and ± 45 braided tubes. Mech, Adv. Mater. Struct., vol. 18, no. 4, pp. 287–300, 2011.
  • N. Swaminathan, and R. C. Averill, Contribution of failure mechanisms to crush energy absorption in a composite tube, Mech. Adv. Mater. Struct., vol. 13, no. 1, pp. 51–59, 2006.
  • Q. Liu, K. Liufu, Z. Cui, J. Li, J. Fang, and Q. Li, Multiobjective optimization of perforated square CFRP tubes for crashworthiness, Thin-Walled Struct., vol. 149, pp. 106628, 2020.
  • M. H. Kabir, S. Fawzia, T. H. T. Chan, J. C. Gamage, and J. B. Bai, Experimental and numerical investigation of the behaviour of CFRP strengthened CHS beams subjected to bending, Eng. Struct., vol. 113, pp. 160–173, 2016.
  • J. G. Teng, D. Fernando, and T. Yu, Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates, Eng. Struct., vol. 86, pp. 213–224, 2015.
  • M. Zhang, B. Sun, H. Hu, and B. Gu, Dynamic behavior of 3D biaxial spacer weft-knitted composite T-beam under transverse impact. Mech. Adv. Mater. Struct., vol. 16, no. 5, pp. 356–370, 2009.
  • G. Minak, and D. Ghelli, Influence of diameter and boundary conditions on low velocity impact response of CFRP circular laminated plates, Compos. B Eng., vol. 39, no. 6, pp. 962–972, 2008.
  • L. Jiao-Wang, J. A. Loya, and C. Santiuste, Influence of cross-section on the impact and post-impact behavior of biocomposites bumper beams, Mech. Adv. Mater. Struct., pp. 1–12, 2022. https://doi.org/10.1080/15376494.2022.2072029
  • B. Yu, V. S. Deshpande, and N. A. Fleck, Perforation of aluminum alloy-CFRP bilayer plates under quasi-static and impact loading, Int. J. Impact Eng., vol. 121, pp. 106–118, 2018.
  • Z. Wu, L. Shi, X. Cheng, Z. Xiang, and X. Hu, Transverse impact behavior and residual axial compression characteristics of braided composite tubes: Experimental and numerical study, Int. J. Impact Eng., vol. 142, pp. 103578, 2020.
  • K. Yuan, K. Liu, Z. Wang, K. Wei, and M. Yang, Dynamic fracture in CFRP laminates: Effect of projectile mass and dimension, Eng. Fract. Mech., vol. 251, pp. 107764, 2021.
  • F. Ahmad, H. Mehboob, F. Abbassi, J. W. Hong, J. Zghal, and A. Mehboob, Numerical investigation to evaluate the energy effect on the impact resistance of an aircraft carbon fiber-reinforced polymer composite, Mech. Adv. Mater. Struct., vol. 29, pp. 1–11, 2021.
  • Z. Sun, C. Li, and Y. Tie, Experimental and numerical investigations on damage accumulation and energy dissipation of patch-repaired CFRP laminates under repeated impacts, Mater. Des., vol. 202, pp. 109540, 2021.
  • S. Fakhreddini-Najafabadi, M. Torabi, and F. Taheri-Behrooz, An experimental investigation on the low-velocity impact performance of the CFRP filled with nanoclay, Aerosp. Sci. Technol., vol. 116, pp. 106858, 2021.
  • P. Ghosh, and K. Ramajeyathilagam, Numerical investigation on damage behavior of circular composite laminate under low velocity impact, Mater. Today Proc., vol. 33, pp. 5448–5454, 2020.
  • S. Seifoori, A. M. Parrany, and S. Mirzarahmani, Impact damage detection in CFRP and GFRP curved composite laminates subjected to low-velocity impacts, Compos. Struct., vol. 261, pp. 113278, 2021.
  • J. Zhou, B. Liao, Y. Shi, Y. Zuo, H. Tuo, and L. Jia, Low-velocity impact behavior and residual tensile strength of CFRP laminates, Compos. B Eng., vol. 161, pp. 300–313, 2019.
  • K. Panbarasu, V. R. Ranganath, and R. V. Prakash, An experimental study on impact behavior of quasi-isotropic CFRP laminates, Mater. Today Proc., vol. 44, pp. 289–293, 2021.
  • X. Zhu, X. Fu, L. Liu, K. Xu, G. Luo, Z. Zhao and W. Chen, Damage mechanism of composite laminates under multiple ice impacts at high velocity, Int. J. Impact Eng., vol. 168, pp. 104296, 2022.
  • J. Zhou, B. Liao, Y. Shi, L. Ning, Y. Zuo, and L. Jia, Experimental investigation of the double impact position effect on the mechanical behavior of low-velocity impact in CFRP laminates, Compos. B Eng., vol. 193, pp. 108020, 2020.
  • M. A. Maghsoudlou, R. Barbaz Isfahani, S. Saber-Samandari, and M. Sadighi, The response of GFRP nanocomposites reinforced with functionalized SWCNT under low velocity impact: Experimental and LS-DYNA simulation investigations, Iran. J. Mater. Sci. Eng., vol. 18, no. 2, pp. 0–0, 2021.
  • Y. Gitiara, R. Barbaz-Isfahani, S. Saber-Samandari, and M. Sadighi, Low-velocity impact behavior of incorporated GFRP composites with nanoclay and nanosilica in a corrosive environment: Experimental and numerical study, J. Compos. Mater., vol. 55, no. 27, pp. 3989–4010, 2021.
  • H. Dadras, R. Barbaz‐Isfahani, S. Saber‐Samandari, and M. Salehi, Experimental and multi‐scale finite element modeling for evaluating healing efficiency of electro‐sprayed microcapsule based glass fiber‐reinforced polymer composites, Polym. Compos., vol. 43, no. 9, pp. 5929–5945, 2022.
  • R. Barbaz-Isfahani, S. Saber-Samandari, and M. Salehi, Experimental and numerical research on healing performance of reinforced microcapsule-based self-healing polymers using nanoparticles, J. Reinf. Plast. Compos., 2022. https://doi.org/10.1177/07316844221102945
  • M. M. Xu, G. Y. Huang, Y. X. Dong, and S. S. Feng, An experimental investigation into the high velocity penetration resistance of CFRP and CFRP/aluminium laminates, Compos Struct., vol. 188, pp. 450–460, 2018.
  • Y. Wan, J. Yao, H. Li, Y. Huang, P. You, Y. Xu and Z. Lei, Experimental studies of low-velocity impact behavior on hybrid metal wire net/woven carbon-fiber reinforced composite laminates, Compos. Commun., vol. 32, pp. 101185, 2022.
  • N. Hongkarnjanakul, C. Bouvet, and S. Rivallant, Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure, Compos. Struct., vol. 106, pp. 549–559, 2013.
  • Q. Wu, X. Zhi, Q. Li, and M. Guo, Experimental and numerical studies of GFRP-reinforced steel tube under low-velocity transverse impact, Int. J. Impact Eng., vol. 127, pp. 135–153, 2019.
  • L. Shi, Z. Wu, X. Cheng, X. Ru, and Y. Yuan, Residual crashworthiness of braided composite tube with transverse multi-impact damages: Experimental and numerical study, Compos. Struct., vol. 255, pp. 112903, 2021.
  • Y. Liu, W. Zhuang, and D. Wu, Performance and damage of carbon fibre reinforced polymer tubes under low-velocity transverse impact, Thin-Walled Struct., vol. 151, pp. 106727, 2020.
  • Z. Wu, L. Shi, Z. Pan, Z. Xiang, and Y. Yuan, Damage assessment of braided composite tube subjected to repeated transverse impact, Thin-Walled Struct., vol. 156, pp. 107004, 2020.
  • Z. Pan, F. Qiao, J. Yu, W. Ouyang, and Z. Wu, Distribution of axial yarns on the localized deformation and damage mechanism of triaxial braided composite tubes, Thin-Walled Struct., vol. 177, pp. 109389, 2022.
  • Z. Pan, F. Qiao, M. Wang, Z. Wu, and Z. Ying, A novel damage mechanism analysis of integrally braided CFRP and CFRP/aluminum hybrid composite tube subjected to transverse impact, Mater. Des., vol. 206, pp. 109815, 2021.
  • L. Shi, Z. Wu, X. Cheng, Z. Pan, and Y. Yuan, Transverse impact response of hybrid biaxial/uniaxial braided composite tubes, Eng Struct., vol. 244, pp. 112816, 2021.
  • A. Matzenmiller, J. Lubliner, and R. L. Taylor, A constitutive model for anisotropic damage in fiber-composites, Mech. Mater., vol. 20, no. 2, pp. 125–152, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.