143
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effect of the electric field on the sound transmission loss of double-walled electro-rheological fluid sandwich plates with functionally graded carbon nanotube reinforced composite facesheets

ORCID Icon, &
Pages 3389-3412 | Received 17 Nov 2022, Accepted 31 Jan 2023, Published online: 20 Feb 2023

References

  • T. T. Soong, and M. C. Costantinou, Passive and Active Structural Vibration Control in Civil Engineering, Springer, Berlin, Germany, 2014.
  • J. Tang, and K.-W. Wang, Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement, Smart Mater. Struct., vol. 10, no. 4, pp. 794–806, 2001. DOI: 10.1088/0964-1726/10/4/325.
  • A. Tabrizikahou, M. Kuczma, M. Łasecka-Plura, E. N. Farsangi, M. Noori, P. Gardoni, and S. Li, Application and modelling of shape-memory alloys for structural vibration control: state-of-the-art review, Constr. Build. Mater., vol. 342, pp. 127975, 2022. DOI: 10.1016/j.conbuildmat.2022.127975.
  • A. Sharma, Effect of porosity on active vibration control of smart structure using porous functionally graded piezoelectric material, Compos. Struct., vol. 280, pp. 114815, 2022. DOI: 10.1016/j.compstruct.2021.114815.
  • T. Hao, Electrorheological fluids, Adv. Mater., vol. 13, no. 24, pp. 1847–1857, 2001. DOI: 10.1002/1521-4095(200112)13:24<1847::AID-ADMA1847>3.0.CO;2-A.
  • S. Kolekar, K. Venkatesh, J.-S. Oh, and S.-B. Choi, Vibration controllability of sandwich structures with smart materials of electrorheological fluids and magnetorheological materials: a review, J. Vib. Eng. Technol., vol. 7, no. 4, pp. 359–377, 2019. DOI: 10.1007/s42417-019-00120-5.
  • J.-Y. Yeh, and L.-W. Chen, Vibration of a sandwich plate with a constrained layer and electrorheological fluid core, Compos. Struct., vol. 65, no. 2, pp. 251–258, 2004. DOI: 10.1016/j.compstruct.2003.11.004.
  • A. G. Arani, S. A. Jamali, and H. B. Zarei, Differential quadrature method for vibration analysis of electro-rheological sandwich plate with CNT reinforced nanocomposite facesheets subjected to electric field, Compos. Struct., vol. 180, pp. 211–220, 2017. DOI: 10.1016/j.compstruct.2017.07.015.
  • P. Shahali, H. Haddadpour, and S. Shakhesi, Dynamic analysis of electrorheological fluid sandwich cylindrical shells with functionally graded face sheets using a semi-analytical approach, Compos. Struct., vol. 295, pp. 115715, 2022. DOI: 10.1016/j.compstruct.2022.115715.
  • M. Keshavarzian, M. M. Najafizadeh, K. Khorshidi, P. Yousefi, and S. M. Alavi, Non-linear free vibration analysis of a thick sandwich panel with an electrorheological core, J. Vib. Eng. Technol., vol. 10, no. 4, pp. 1495–1509, 2022. DOI: 10.1007/s42417-022-00463-6.
  • M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, and A. M. Rao, Carbon nanotubes. In: Physics Fullerene-Based Fullerene-Related Mater, Springer, Berlin, Germany, 2000, pp. 331–379.
  • H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci., vol. 500, no. 1–3, pp. 218–241, 2002. DOI: 10.1016/S0039-6028(01)01558-8.
  • S. Iijima, and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol. 363, no. 6430, pp. 603–605, 1993. DOI: 10.1038/363603a0.
  • X.-G. Yue, S. Sahmani, H. Luo, and B. Safaei, Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams, Arch. Civ. Mech. Eng., vol. 23, pp. 21, 2022.
  • R. Alshenawy, B. Safaei, S. Sahmani, Y. Elmoghazy, A. Al-Alwan, and M. Al Nuwairan, Buckling mode transition in nonlinear strain gradient-based stability behavior of axial-thermal-electrical loaded FG piezoelectric cylindrical panels at microscale, Eng. Anal. Bound. Elem., vol. 141, pp. 36–64, 2022. DOI: 10.1016/j.enganabound.2022.04.010.
  • X. Ma, S. Sahmani, and B. Safaei, Quasi-3D large deflection nonlinear analysis of isogeometric FGM microplates with variable thickness via nonlocal stress–strain gradient elasticity, Eng. Comput., vol. 38, no. 4, pp. 3691–3704, 2022. DOI: 10.1007/s00366-021-01390-y.
  • D. T. Manh, V. T. T. Anh, P. D. Nguyen, and N. D. Duc, Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells, Int. J. Str. Stab. Dyn., vol. 20, no. 02, pp. 2050018, 2020. DOI: 10.1142/S0219455420500182.
  • H. Tan, L. Y. Jiang, Y. Huang, B. Liu, and K. C. Hwang, The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Compos. Sci. Technol., vol. 67, no. 14, pp. 2941–2946, 2007. DOI: 10.1016/j.compscitech.2007.05.016.
  • L. Ci, J. Suhr, V. Pushparaj, X. Zhang, and P. M. Ajayan, Continuous carbon nanotube reinforced composites, Nano Lett., vol. 8, no. 9, pp. 2762–2766, 2008. DOI: 10.1021/nl8012715.
  • J. Zhao, J. Wang, S. Sahmani, and B. Safaei, Probabilistic-based nonlinear stability analysis of randomly reinforced microshells under combined axial-lateral load using meshfree strain gradient formulations, Eng. Struct., vol. 262, pp. 114344, 2022. DOI: 10.1016/j.engstruct.2022.114344.
  • P. H. Cong, and N. D. Duc, New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment, Acta Mech., vol. 229, no. 9, pp. 3651–3670, 2018. DOI: 10.1007/s00707-018-2178-3.
  • N. D. Duc, Nonlinear static and dynamic stability of functionally graded plates and shells, Vietnam Nationall University Press, Vietnam, 2014.
  • V. T. T. Anh, V. T. Huong, P. D. Nguyen, and N. D. Duc, Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells, Mech. Compos. Mater., vol. 57, no. 5, pp. 609–622, 2021. DOI: 10.1007/s11029-021-09983-w.
  • M. Hosseini, and A. Jamalpoor, Analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials, J. Therm. Stress., vol. 38, no. 12, pp. 1428–1456, 2015. DOI: 10.1080/01495739.2015.1073986.
  • M. Hosseini, A. Jamalpoor, and A. Fath, Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation, Meccanica, vol. 52, no. 6, pp. 1381–1396, 2017. DOI: 10.1007/s11012-016-0469-0.
  • A. Jamalpoor, and A. Kiani, Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects, Appl. Phys. A., vol. 123, no. 3, pp. 201, 2017. DOI: 10.1007/s00339-017-0784-x.
  • K. K. Joshi, V. R. Kar, and B. Thomas, Higher-order finite element solution of graphene platelets reinforced nanocomposite curved panels with uniform/non-uniform porosity, Mech. Based Des. Struct. Mach., pp. 1–20, 2022. DOI: 10.1080/15397734.2022.2104311.
  • S. K. Chaudhary, V. R. Kar, and K. K. Shukla, Geometrically nonlinear large-deflection analysis of heated functionally graded composite panels with single and multiple perforations, Mech. Adv. Mater. Struct., pp. 1–18, 2022. DOI: 10.1080/15376494.2022.2092798.
  • S. K. Chaudhary, V. R. Kar, and K. K. Shukla, Flexural behavior of perforated functionally graded composite panels under complex loading conditions: higher-order finite-element approach, J. Aerosp. Eng., vol. 34, no. 6, pp. 4021081, 2021. DOI: 10.1061/(ASCE)AS.1943-5525.0001334.
  • R. Alshenawy, S. Sahmani, B. Safaei, Y. Elmoghazy, A. Al-Alwan, and M. Al Nuwairan, Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations, Appl. Math. Comput., vol. 439, pp. 127623, 2023. DOI: 10.1016/j.amc.2022.127623.
  • A. Karakoti, and V. R. Kar, Deformation characteristics of sinusoidally-corrugated laminated composite panel–A higher-order finite element approach, Compos. Struct., vol. 216, pp. 151–158, 2019. DOI: 10.1016/j.compstruct.2019.02.097.
  • K. K. Joshi, and V. R. Kar, Effect of material heterogeneity on the deformation behaviour of multidirectional (1D/2D/3D) functionally graded composite panels, Eng. Comput., vol. 38, no. 8, pp. 3325–3350, 2021. DOI: 10.1108/EC-06-2020-0301.
  • A. Karakoti, S. Pandey, and V. R. Kar, Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment, Thin-Walled Struct., vol. 173, pp. 108985, 2022. DOI: 10.1016/j.tws.2022.108985.
  • H. S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., vol. 91, no. 1, pp. 9–19, 2009. DOI: 10.1016/j.compstruct.2009.04.026.
  • Q. C. Do, D. N. Pham, D. Q. Vu, T. T. A. Vu, and D. D. Nguyen, Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load, Steel Compos, Struct., vol. 31, , pp. 243–259, 2019.
  • N. Van Thanh, N. D. Khoa, N. D. Tuan, P. Tran, and N. D. Duc, Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations, J. Therm. Stress., vol. 40, no. 10, pp. 1254–1274, 2017. DOI: 10.1080/01495739.2017.1338928.
  • D. D. Nguyen, Q. Q. Tran, and D. K. Nguyen, New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature, Aerosp. Sci. Technol., vol. 71, pp. 360–372, 2017. DOI: 10.1016/j.ast.2017.09.031.
  • N. D. Duc, and P. P. Minh, Free vibration analysis of cracked FG CNTRC plates using phase field theory, Aerosp. Sci. Technol., vol. 112, pp. 106654, 2021. DOI: 10.1016/j.ast.2021.106654.
  • N. D. Dat, T. Q. Quan, and N. D. Duc, Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers, Eur. J. Mech., vol. 90, pp. 104351, 2021. DOI: 10.1016/j.euromechsol.2021.104351.
  • N. D. Duc, P. H. Cong, N. D. Tuan, P. Tran, and N. Van Thanh, Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations, Thin-Walled Struct., vol. 115, pp. 300–310, 2017. DOI: 10.1016/j.tws.2017.02.016.
  • N. D. Dat, T. Q. Quan, V. Mahesh, and N. D. Duc, Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment, Int. J. Mech. Sci., vol. 186, pp. 105906, 2020. DOI: 10.1016/j.ijmecsci.2020.105906.
  • R. Ansari, J. Torabi, and M. F. Shojaei, Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading, Compos. Part B Eng., vol. 109, pp. 197–213, 2017. DOI: 10.1016/j.compositesb.2016.10.050.
  • E. Cheshmeh, M. Karbon, A. Eyvazian, D. Won Jung, M. Habibi, and M. Safarpour, Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory, Mech. Based Des. Struct. Mach., vol. 50, no. 4, pp. 1137–1160, 2022. DOI: 10.1080/15397734.2020.1744005.
  • N. D. Dat, N. Van Thanh, V. MinhAnh, and N. D. Duc, Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer, Mech. Adv. Mater. Struct., vol. 29, no. 10, pp. 1431–1448, 2022. DOI: 10.1080/15376494.2020.1822476.
  • D. K. Heuer, M. A. Lloyd, D. A. Abrams, G. Baerveldt, D. S. Minckler, M. B. Lee, and J. F. Martone, Which is better? One or two: a randomized clinical trial of single-plate versus double-plate Molteno implantation for glaucomas in aphakia and pseudophakia, Ophthalmology, vol. 99, no. 10, pp. 1512–1519, 1992. DOI: 10.1016/S0161-6420(92)31772-5.
  • J. P. Carneal, and C. R. Fuller, An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems, J. Sound Vib., vol. 272, no. 3–5, pp. 749–771, 2004. DOI: 10.1016/S0022-460X(03)00418-8.
  • H. Zhang, D. Shi, S. Zha, and Q. Wang, Vibro-acoustic analysis of the thin laminated rectangular plate-cavity coupling system, Compos. Struct., vol. 189, pp. 570–585, 2018. DOI: 10.1016/j.compstruct.2018.01.099.
  • S. M. Hasheminejad, and A. Jamalpoor, Cancelation of acoustic scattering from a smart hybrid ERF/PZT-based double‐wall composite spherical shell structure, Mech. Adv. Mater. Struct., vol. 29, no. 28, pp. 7294–7315, 2022. DOI: 10.1080/15376494.2021.1995549.
  • S. M. Hasheminejad, and A. Jamalpoor, Control of sound transmission into a hybrid double-wall sandwich cylindrical shell, J. Vib. Control., vol. 28, no. 5–6, pp. 689–706, 2022. DOI: 10.1177/1077546320982136.
  • C. Thongchom, T. Jearsiripongkul, N. Refahati, P. Roudgar Saffari, P. Roodgar Saffari, S. Sirimontree, and S. Keawsawasvong, Sound transmission loss of a honeycomb sandwich cylindrical shell with functionally graded porous layers, Buildings., vol. 12, no. 2, pp. 151, 2022. DOI: 10.3390/buildings12020151.
  • K. Daneshjou, R. Talebitooti, and A. Tarkashvand, Analysis of sound transmission loss through thick-walled cylindrical shell using three-dimensional elasticity theory, Int. J. Mech. Sci., vol. 106, pp. 286–296, 2016. DOI: 10.1016/j.ijmecsci.2015.12.019.
  • K. Daneshjou, R. Talebitooti, and A. Tarkashvand, Investigation on sound transmission through thick-wall cylindrical shells using 3D- theory of elasticity in the presence of external and mean air-gap flow, J. Vib. Control., vol. 24, no. 5, pp. 975–1000, 2018. DOI: 10.1177/1077546316655723.
  • R. Talebitooti, K. Daneshjou, and M. Kornokar, Three dimensional sound transmission through poroelastic cylindrical shells in the presence of subsonic flow, J. Sound Vib., vol. 363, pp. 380–406, 2016. DOI: 10.1016/j.jsv.2015.11.014.
  • S. Reaei, and R. Talebitooti, Functionally graded viscoelastic core characteristics on vibroacoustic behavior of double-walled cylindrical shells in a subsonic external flow, J. Vib. Control., vol. 29, no. 1–2, pp. 265–285, 2023. DOI: 10.1177/10775463211046728.
  • C. Shen, F. X. Xin, and T. J. Lu, Theoretical model for sound transmission through finite sandwich structures with corrugated core, Int. J. Non. Linear. Mech., vol. 47, no. 10, pp. 1066–1072, 2012. DOI: 10.1016/j.ijnonlinmec.2011.09.014.
  • L. Kang, B. Liu, and F. An, Beam element resonance-based prediction and parametric analysis of sound transmission of laminated plates, Appl. Acoust., vol. 199, pp. 109036, 2022. DOI: 10.1016/j.apacoust.2022.109036.
  • Z. Hu, K. Zhou, S. Huang, and Y. Chen, Sound transmission analysis of functionally graded material plates with general boundary conditions in thermal environments, Appl. Acoust., vol. 174, pp. 107795, 2021. DOI: 10.1016/j.apacoust.2020.107795.
  • S. M. Hasheminejad, A. Hakimi, and H. Keshavarzpour, Broadband sound transmission loss enhancement of an arbitrary-thick hybrid smart composite plate using multi-objective particle swarm optimization–based active control, J. Intell. Mater. Syst. Struct., vol. 29, no. 8, pp. 1724–1747, 2018. DOI: 10.1177/1045389X17754257.
  • T. Fu, Z. Chen, H. Yu, Z. Wang, and X. Liu, An analytical study of sound transmission through stiffened double laminated composite sandwich plates, Aerosp. Sci. Technol., vol. 82–83, pp. 92–104, 2018. DOI: 10.1016/j.ast.2018.09.012.
  • M. Danesh, and A. Ghadami, Sound transmission loss of double-wall piezoelectric plate made of functionally graded materials via third-order shear deformation theory, Compos. Struct., vol. 219, pp. 17–30, 2019. DOI: 10.1016/j.compstruct.2019.03.040.
  • V. Gunasekaran, J. Pitchaimani, and L. B. M. Chinnapandi, Acoustic radiation and transmission loss of FG-Graphene composite plate under nonuniform edge loading, Eur. J. Mech., vol. 88, pp. 104249, 2021. DOI: 10.1016/j.euromechsol.2021.104249.
  • R. Ye, A. Tian, Y. Chen, N. Zhao, W. Yang, and P. Ren, Sound transmission characteristics of a composite sandwich plate using multi-layer first-order zigzag theory, Thin-Walled Struct., vol. 179, pp. 109607, 2022. DOI: 10.1016/j.tws.2022.109607.
  • T. Wang, J. Liu, and M. Chen, Sound transmission loss of an inertant metamaterial plate submerged in moving fluids, Appl. Math. Model. vol. 105, pp. 815–831, 2022.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • A. Kiani, M. Sheikhkhoshkar, A. Jamalpoor, and M. Khanzadi, Free vibration problem of embedded magneto-electro-thermo-elastic nanoplate made of functionally graded materials via nonlocal third-order shear deformation theory, J. Intell. Mater. Syst. Struct., vol. 29, no. 5, pp. 741–763, 2018. DOI: 10.1177/1045389X17721034.
  • B. Shahriari, M. R. Karamooz Ravari, and H. Zeighampour, Vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates using Mindlin’s strain gradient theory, Compos. Struct., vol. 134, pp. 1036–1043, 2015. DOI: 10.1016/j.compstruct.2015.08.118.
  • K. Mehar, S. K. Panda, A. Dehengia, and V. R. Kar, Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment, J. Sandwich Struct. Mater., vol. 18, no. 2, pp. 151–173, 2016. DOI: 10.1177/1099636215613324.
  • P. Phung-Van, M. Abdel-Wahab, K. M. Liew, S. P. A. Bordas, and H. Nguyen-Xuan, Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory, Compos. Struct., vol. 123, pp. 137–149, 2015. DOI: 10.1016/j.compstruct.2014.12.021.
  • S. M. Hasheminejad, and M. Maleki, Free vibration and forced harmonic response of an electrorheological fluid-filled sandwich plate, Smart Mater. Struct., vol. 18, no. 5, pp. 055013, 2009. DOI: 10.1088/0964-1726/18/5/055013.
  • T. Lu, and F. Xin, Vibro-Acoustics of Lightweight Sandwich Structures, Springer, Berlin, Germany, 2014.
  • S. M. Hasheminejad, and A. Jamalpoor, Sound transmission control through a hybrid smart double sandwich plate structure, J. Sandwich Struct. Mater., vol. 23, no. 6, pp. 2443–2483, 2021. DOI: 10.1177/1099636220909764.
  • L. Hadji, M. Avcar, and Ö. Civalek, An analytical solution for the free vibration of FG nanoplates, J. Braz. Soc. Mech. Sci. Eng., vol. 43, pp. 1–14, 2021.
  • S. Ghahnavieh, S. Hosseini-Hashemi, and K. Rajabi, A higher-order nonlocal strain gradient mass sensor based on vibrating heterogeneous magneto-electro-elastic nanoplate via third-order shear deformation theory, Eur. Phys. J. Plus., vol. 133, pp. 518, 2018.
  • F. X. Xin, T. J. Lu, and C. Q. Chen, Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity, J. Acoust. Soc. Am., vol. 124, no. 6, pp. 3604–3612, 2008. DOI: 10.1121/1.3006956.
  • R. Panneton, and N. Atalla, Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials, J. Acoust. Soc. Am., vol. 100, no. 1, pp. 346–354, 1996. DOI: 10.1121/1.415956.
  • F. X. Xin, and T. J. Lu, Analytical and experimental investigation on transmission loss of clamped double panels: implication of boundary effects, J. Acoust. Soc. Am., vol. 125, no. 3, pp. 1506–1517, 2009. DOI: 10.1121/1.3075766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.