321
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Large twist angle of a novel 3D lattice structure via a tailored buckling mode

, , , ORCID Icon, , , & show all
Pages 3583-3594 | Received 16 Sep 2022, Accepted 10 Feb 2023, Published online: 16 Feb 2023

References

  • A.A. Zadpoor, Mechanical meta-materials, Mater. Horiz., vol. 3, no. 5, pp. 371–381, 2016. DOI: 10.1039/C6MH00065G.
  • J.U. Surjadi, L. Gao, H. Du, and X. Li, Mechanical metamaterials and their engineering applications, Adv. Eng. Mater., vol. 21, no. 3, p. 1800864, 2019. DOI: 10.1002/adem.201800864.
  • X.L. Yu, J. Zhou, H.Y. Liang, Z.Y. Jiang, and L.L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Progr. Mater. Sci., vol. 94, pp. 114–173, 2018. DOI: 10.1016/j.pmatsci.2017.12.003.
  • H. Yang, and L. Ma, 1D to 3D multi-stable architected materials with zero Poisson's ratio and controllable thermal expansion, Mater. Des., vol. 188, p. 108430, 2020. DOI: 10.1016/j.matdes.2019.108430.
  • W. Wu, P. Liu, and Z. Kang, A novel mechanical metamaterial with simultaneous stretching- and compression-expanding property, Mater. Des., vol. 208, p. 109930, 2021. DOI: 10.1016/j.matdes.2021.109930.
  • I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, and M. Wegener, New twists of 3D chiral metamaterials, Adv. Mater., vol. 31, no. 26, p. e1807742, 2019. DOI: 10.1002/adma.201807742.
  • T. Frenzel, M. Kadic, and M. Wegener, Three-dimensional mechanical metamaterials with a twist, Science, vol. 358, no. 6366, pp. 1072–1074, 2017. DOI: 10.1126/science.aao4640.
  • A. Sommerfeld, Mechanics of Deformable Bodies: Lectures on Theoretical Physics. Academic Press, New York, 1950.
  • L. Wang and H.-T. Liu, 3D compression–torsion cubic mechanical metamaterial with double inclined rods, Extreme Mech. Lett., vol. 37, p. 100706, 2020. DOI: 10.1016/j.eml.2020.100706.
  • R.C. Zhong, M.H. Fu, X. Chen, B.B. Zheng, and L.L. Hu, A novel three-dimensional mechanical metamaterial with compression-torsion properties, Compos. Struct., vol. 226, p. 111232, 2019. DOI: 10.1016/j.compstruct.2019.111232.
  • B.-B. Zheng, R.-C. Zhong, X. Chen, M.-H. Fu, and L.-L. Hu, A novel metamaterial with tension-torsion coupling effect, Mater. Des., vol. 171, p. 107700, 2019. DOI: 10.1016/j.matdes.2019.107700.
  • W. Xu, Z. Liu, L. Wang, and P. Zhu, 3D chiral metamaterial modular design with highly-tunable tension-twisting properties, Mater. Today Commun., vol. 30, p. 103006, 2022. DOI: 10.1016/j.mtcomm.2021.103006.
  • D. Goswami, Y. Zhang, S. Liu, O. A. Abdalla, P. D. Zavattieri, and R. V. Martinez, Mechanical metamaterials with programmable compression-twist coupling, Smart Mater. Struct., vol. 30, p. 015005, 2020. DOI: 10.1088/1361-665X/abc182.
  • Z.-L. Xu, Y.-Q. Wang, R. Zhu, and K.-C. Chuang, Torsional bandgap switching in metamaterials with compression–torsion interacted origami resonators, J. Appl. Phys., vol. 130, no. 4, p. 045105, 2021. DOI: 10.1063/5.0056179.
  • R. Tao, L. Ji, Y. Li, Z. Wan, W. Hu, W. Wu, B. Liao, L. Ma, and D. Fang, 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves, Compos. Part B: Eng., vol. 201, p. 108344, 2020. DOI: 10.1016/j.compositesb.2020.108344.
  • W.W. Wu, L.C. Geng, Y.H. Niu, D.X. Qi, X.G. Cui, and D.N. Fang, Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils, Extreme Mech. Lett., vol. 20, pp. 104–111, 2018. DOI: 10.1016/j.eml.2018.02.001.
  • L. Qiu, Y. Yu, L. Zheng, and M. Chen, A novel analytical method of windmill chiral cell structure (WCCS), Compos. Struct., vol. 268, p. 113973, 2021. DOI: 10.1016/j.compstruct.2021.113973.
  • C. Ma, H.S. Lei, J. Hua, Y.C. Bai, J. Liang, and D.N. Fang, Experimental and simulation investigation of the reversible bi-directional twisting response of tetra-chiral cylindrical shells, Compos. Struct., vol. 203, pp. 142–152, 2018. DOI: 10.1016/j.compstruct.2018.07.013.
  • G. Lin, J. Li, P. Chen, W. Sun, S.A. Chizhik, A.A. Makhaniok, G.B. Melnikova, and T.A. Kuznetsova, Buckling of lattice columns made from three-dimensional chiral mechanical metamaterials, Int. J. Mech. Sci., vol. 194, p. 106208, 2021. DOI: 10.1016/j.ijmecsci.2020.106208.
  • S. Janbaz, F.S.L. Bobbert, M.J. Mirzaali, and A.A. Zadpoor, Ultra-programmable buckling-driven soft cellular mechanisms, Mater. Horiz., vol. 6, no. 6, pp. 1138–1147, 2019. DOI: 10.1039/C9MH00125E.
  • L. Meng, J. Shi, C. Yang, T. Gao, Y. Hou, L. Song, D. Gu, J. Zhu, P. Breitkopf, and W. Zhang, An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting, Extreme Mech. Lett., vol. 40, p. 100869, 2020. DOI: 10.1016/j.eml.2020.100869.
  • N. Yang, Y. Deng, J. Huang, and X. Niu, Structural material with designed thermal twist for a simple actuation, Nanotechnol. Rev., vol. 11, no. 1, pp. 414–422, 2022. DOI: 10.1515/ntrev-2022-0026.
  • J. Li, Q. Yang, N. Huang, and R. Tao, A novel mechanical metamaterial with tailorable Poisson's ratio and thermal expansion based on a chiral torsion unit, Smart Mater. Struct., vol. 30, no. 11, p. 115004, 2021. DOI: 10.1088/1361-665X/ac25c9.
  • Z.W. Zhang, S. Pusateri, B.L. Xie, and N. Hu, Tunable energy trapping through contact-induced snap-through buckling in strips with programmable imperfections, Extreme Mech. Lett., vol. 37, p. 100732, 2020. DOI: 10.1016/j.eml.2020.100732.
  • C. Yang, K. Yang, Y. Tian, M. Fu, and L. Hu, Theoretical analysis on the stiffness of compression–torsion coupling metamaterials, Extreme Mech. Lett., vol. 46, p. 101336, 2021. DOI: 10.1016/j.eml.2021.101336.
  • X. Li, Z. Yang, and Z. Lu, Design 3D metamaterials with compression-induced-twisting characteristics using shear–compression coupling effects, Extreme Mech. Lett., vol. 29, p. 100471, 2019. DOI: 10.1016/j.eml.2019.100471.
  • A. Pal, V. Restrepo, D. Goswami, and R.V. Martinez, Exploiting mechanical instabilities in soft robotics: Control, sensing, and actuation, Adv. Mater., vol. 33, no. 19, p. e2006939, 2021. DOI: 10.1002/adma.202006939.
  • A. Iniguez-Rabago, Y. Li, and J.T.B. Overvelde, Exploring multistability in prismatic metamaterials through local actuation, Nat Commun., vol. 10, no. 1, p. 5577, 2019. DOI: 10.1038/s41467-019-13319-7.
  • A. Ghaedizadeh, J. Shen, X. Ren, and Y.M. Xie, Tuning the performance of metallic auxetic metamaterials by using buckling and plasticity, Materials (Basel), vol. 9, no. 1, p. 54, 2016. DOI: 10.3390/ma9010054.
  • B. Haghpanah, L. Salari-Sharif, P. Pourrajab, J. Hopkins, and L. Valdevit, Multistable shape‐reconfigurable architected materials, Adv. Mater., vol. 28, no. 36, pp. 7915–7920, 2016. DOI: 10.1002/adma.201601650.
  • R. Hamzehei, J. Kadkhodapour, A. P. Anaraki, S. Rezaei, S. Dariushi, and A. M. Rezadoust, Octagonal auxetic metamaterials with hyperelastic properties for large compressive deformation, Int. J. Mech. Sci., vol. 145, pp. 96–105, 2018. DOI: 10.1016/j.ijmecsci.2018.06.040.
  • R. Hamzehei, A. Serjouei, N. Wu, A. Zolfagharian, and M. Bodaghi, 4D Metamaterials with Zero Poisson's Ratio, Shape Recovery, and Energy Absorption Features, Adv. Eng. Mater., vol. 24, p. 2200656, 2022. DOI: 10.1002/adem.202200656.
  • H. Yang and L. Ma, Multi-stable mechanical metamaterials by elastic buckling instability, J. Mater. Sci., vol. 54, no. 4, pp. 3509–3526, 2019. DOI: 10.1007/s10853-018-3065-y.
  • T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, Tailored buckling microlattices as reusable light-weight shock absorbers, Adv. Mater., vol. 28, no. 28, pp. 5865–5870, 2016. DOI: 10.1002/adma.201600610.
  • C. Findeisen, J. Hohe, M. Kadic, and P. Gumbsch, Characteristics of mechanical metamaterials based on buckling elements, J. Mech. Phys. Solids, vol. 102, pp. 151–164, 2017. DOI: 10.1016/j.jmps.2017.02.011.
  • R. Hamzehei, A. Zolfagharian, S. Dariushi, and M. Bodaghi, 3D-printed bio-inspired zero Poisson’s ratio graded metamaterials with high energy absorption performance, Smart Mater. Struct., vol. 31, no. 3, p. 035001, 2022. DOI: 10.1088/1361-665X/ac47d6.
  • D. Yang, B. Mosadegh, A. Ainla, B. Lee, F. Khashai, Z. Suo, K. Bertoldi, and G.M. Whitesides, Buckling of elastomeric beams enables actuation of soft machines, Adv. Mater., vol. 27, no. 41, pp. 6323–6327, 2015. DOI: 10.1002/adma.201503188.
  • A. Lazarus and P.M. Reis, Soft actuation of structured cylinders through auxetic behavior, Adv. Eng. Mater., vol. 17, no. 6, pp. 815–820, 2015. DOI: 10.1002/adem.201400433.
  • K.K. Che, C. Yuan, H.J. Qi, and J. Meaud, Viscoelastic multistable architected materials with temperature-dependent snapping sequence, Soft Matter, vol. 14, no. 13, pp. 2492–2499, 2018. DOI: 10.1039/C8SM00217G.
  • S. Janbaz, K. Narooei, T. van Manen, and A. A. Zadpoor, Strain rate–dependent mechanical metamaterials, Sci. Adv., vol. 6, no. 25, p. eaba0616, 2020. DOI: 10.1126/sciadv.aba0616.
  • M.F. Ashby, The properties of foams and lattices, Philos. Trans. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 15–30, 2006. DOI: 10.1098/rsta.2005.1678.
  • W. Liu, H. Song, and C. Huang, Maximizing mechanical properties and minimizing support material of PolyJet fabricated 3D lattice structures, Addit. Manuf., vol. 35, p. 101257, 2020. DOI: 10.1016/j.addma.2020.101257.
  • W. Liu, H. Song, Z. Wang, J. Wang, and C. Huang, Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method, Materi. Des., vol. 181, p. 108065, 2019. DOI: 10.1016/j.matdes.2019.108065.
  • S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping J., vol. 8, no. 4, pp. 248–257, 2002. DOI: 10.1108/13552540210441166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.