82
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Transient thermal shock behavior of the graphene-platelets reinforced annular-shape sector plates in the case of fully-clamped and simply-supported boundary conditions

, , &
Pages 3776-3797 | Received 05 Jun 2022, Accepted 24 Feb 2023, Published online: 09 Mar 2023

References

  • H. Zhang, R. Zhu, D. Shi, and Q. Wang, A simplified plate theory for vibration analysis of composite laminated sector, annular and circular plate, Thin-Walled Struct., vol. 143, pp. 106252, 2019. DOI: 10.1016/j.tws.2019.106252.
  • M. Javani, Y. Kiani, and M. R. Eslami, Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation, Compos. Struct., vol. 261, pp. 113515, 2021. DOI: 10.1016/j.compstruct.2020.113515.
  • S. A. N. Prasad, Q. Gallas, S. Horowitz, B. Homeijer, B.V. Sankar, L.N. Cattafesta, and M. Sheplak, Analytical electroacoustic model of a piezoelectric composite circular plate, AIAA J., vol. 44, no. 10, pp. 2311–2318, 2006. DOI: 10.2514/1.19855.
  • B. Gospodarič, B. Bučar, and G. Fajdiga, Active vibration control of circular saw blades, Eur. J. Wood Prod., vol. 73, no. 2, pp. 151–158, 2015. DOI: 10.1007/s00107-014-0874-9.
  • M. M. Bhatti, M. B. Arain, A. Zeeshan, R. Ellahi, and M. H. Doranehgard, Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: application of thermal energy storage, J Energy Storage, vol. 45, pp. 103511, 2022. DOI: 10.1016/j.est.2021.103511.
  • J. Reddy, C. Wang, and S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, Eur. J. Mech. A/Solids, vol. 18, no. 2, pp. 185–199, 1999. DOI: 10.1016/S0997-7538(99)80011-4.
  • F. Shadmehri, S. Hoa, J. Fortin-Simpson, and H. Ghayoor, Effect of in situ treatment on the quality of flat thermoplastic composite plates made by automated fiber placement (AFP), Adv. Manufact. Polym. Compos. Sci., vol. 4, no. 2, pp. 41–47, 2018. DOI: 10.1080/20550340.2018.1444535.
  • Ö. Civalek and A. K. Baltacıoğlu, Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method, Compos. Struct., vol. 203, pp. 458–465, 2018. DOI: 10.1016/j.compstruct.2018.07.037.
  • H. Bisheh, A. Alibeigloo, M. Safarpour, and A. R. Rahimi, Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method, Int. J. Appl. Mech., vol. 11, no. 08, pp. 1950073, 2019. DOI: 10.1142/S175882511950073X.
  • X. He, J. Ding, M. Habibi, H. Safarpour, and M. Safarpour, Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate, Thin-Walled Struct., vol. 166, pp. 108019, 2021. DOI: 10.1016/j.tws.2021.108019.
  • M. M. Keleshteri, H. Asadi, and M. M. Aghdam, Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation, Thin-Walled Struct., vol. 135, pp. 453–462, 2019. DOI: 10.1016/j.tws.2018.11.020.
  • M. Safarpour, A. Rahimi, A. Alibeigloo, H. Bisheh, and A. Forooghi, Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions, Mech. Based Design Struct. Mach., vol. 49, no. 5, pp. 707–737, 2021. DOI: 10.1080/15397734.2019.1701491.
  • A. Rahimi, A. Alibeigloo, and M. Safarpour, Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell, J. Vibrat. Control., vol. 26, no. 19–20, pp. 1627–1645, 2020. DOI: 10.1177/1077546320902340.
  • D. Shahgholian-Ghahfarokhi, M. Safarpour, and A. Rahimi, Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs), Mech. Based Design Struct. Mach., vol. 49, no. 1, pp. 81–102, 2021. DOI: 10.1080/15397734.2019.1666723.
  • M. Safarpour, A. R. Rahimi, and A. Alibeigloo, Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM, Mech. Based Design Struct. Mach., vol. 48, no. 4, pp. 496–524, 2020. DOI: 10.1080/15397734.2019.1646137.
  • S. H. Alavi, and H. Eipakchi, An analytical approach for dynamic response of viscoelastic annular sector plates, Mech. Adv. Mater. Struct., vol. 29, no. 23, pp. 3372–3386, 2022. DOI: 10.1080/15376494.2021.1896821.
  • H. Xin, J. A. Correia, and M. Veljkovic, Three-dimensional fatigue crack propagation simulation using extended finite element methods for steel grades S355 and S690 considering mean stress effects, Eng. Struct., vol. 227, pp. 111414, 2021. DOI: 10.1016/j.engstruct.2020.111414.
  • D. Yavas, Z. Zhang, Q. Liu, and D. Wu, Fracture behavior of 3D printed carbon fiber-reinforced polymer composites, Compos. Sci. Technol., vol. 208, pp. 108741, 2021. DOI: 10.1016/j.compscitech.2021.108741.
  • V. Stelmashuk, and P. Hoffer, Shock waves generated by an electrical discharge on composite electrode immersed in water with different conductivities, IEEE Trans. Plasma Sci., vol. 40, no. 7, pp. 1907–1912, 2012. DOI: 10.1109/TPS.2012.2197638.
  • M. O. Kaman, N. Celik, and R. Das, Thermo-mechanical analysis of a FGM plate subjected to thermal shock–A new numerical approach considering real time temperature dependent material properties, Mater. Test., vol. 63, no. 4, pp. 341–349, 2021. DOI: 10.1515/mt-2020-0050.
  • S. Clifton, B. Thimmappa, R. Selvam, and B. Shivamurthy, Polymer nanocomposites for high-velocity impact applications-A review, Compos. Commun., vol. 17, pp. 72–86, 2020. DOI: 10.1016/j.coco.2019.11.013.
  • K. Osnes, S. Dey, O. S. Hopperstad, and T. Børvik, On the dynamic response of laminated glass exposed to impact before blast loading, Exp. Mech., vol. 59, no. 7, pp. 1033–1046, 2019. DOI: 10.1007/s11340-019-00496-1.
  • K. Mondal, I. I. I. L. Nuñez, C. M. Downey, and I. J. van Rooyen, Recent advances in the thermal barrier coatings for extreme environments, Mater. Sci. Energy Technol., vol. 4, pp. 208–210, 2021. DOI: 10.1016/j.mset.2021.06.006.
  • Z. Shen, G. Liu, R. Mu, L. He, Z. Xu, and J. Dai, Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings, Corrosion. Sci., vol. 185, pp. 109418, 2021. DOI: 10.1016/j.corsci.2021.109418.
  • Z. Shen, G. Liu, R. Zhang, J. Dai, L. He, and R. Mu, Thermal property and failure behavior of LaSmZrO thermal barrier coatings by EB-PVD, Iscience, vol. 25, no. 4, pp. 104106, 2022. DOI: 10.1016/j.isci.2022.104106.
  • P. K. Saroj, S. A. Sahu, A. Singhal, and S. M. Abo-Dahab, On the transference of Love-type waves in pre-stressed PZT-5H material stick on SiO2 material with irregularity, Mater. Res. Express, vol. 6, no. 12, pp. 125703, 2019. DOI: 10.1088/2053-1591/ab5544.
  • S. A. Sahu, S. Mondal, and N. Dewangan, Polarized shear waves in functionally graded piezoelectric material layer sandwiched between corrugated piezomagnetic layer and elastic substrate, J. Sandwich Struct. Mater., vol. 21, no. 8, pp. 2921–2948, 2019. DOI: 10.1177/1099636217726330.
  • G. Zhang, C. Xiao, A. Rahimi, and M. Safarpour, Thermal and mechanical buckling and vibration analysis of FG-GPLRC annular plate using higher order shear deformation theory and generalized differential quadrature method, Int. J. Appl. Mech., vol. 12, no. 02, pp. 2050019, 2020. DOI: 10.1142/S1758825120500192.
  • A. Singhal, S. A. Sahu, and S. Chaudhary, Liouville-Green approximation: An analytical approach to study the elastic waves vibrations in composite structure of piezo material, Compos. Struct., vol. 184, pp. 714–727, 2018. DOI: 10.1016/j.compstruct.2017.10.031.
  • M. K. Singh, S. A. Sahu, A. Singhal, and S. Chaudhary, Approximation of surface wave velocity in smart composite structure using Wentzel–Kramers–Brillouin method, J. Intelligent Mater. Syst. Struct., vol. 29, no. 18, pp. 3582–3597, 2018. DOI: 10.1177/1045389X18786464.
  • A. Singhal, S. A. Sahu, and S. Chaudhary, Approximation of surface wave frequency in piezo-composite structure, Compos. B Eng., vol. 144, pp. 19–28, 2018. DOI: 10.1016/j.compositesb.2018.01.017.
  • W. Liu, L. Deng, Z. Cai, D. Li, and A. Rahimi, Impact of in-plane follower force on the frequency response of the hybrid angle-ply laminated system via dynamic simulation and generalized differential quadrature framework, Eng. Comput., vol. 38, no. S5, pp. 3743–3760, 2022. DOI: 10.1007/s00366-020-01215-4.
  • S. Nirwal, S. A. Sahu, A. Singhal, and J. Baroi, Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect, Compos. B Eng., vol. 167, pp. 434–447, 2019. DOI: 10.1016/j.compositesb.2019.03.014.
  • S. Chaudhary, S. A. Sahu, A. Singhal, and S. Nirwal, Interfacial imperfection study in pres-stressed rotating multiferroic cylindrical tube with wave vibration analytical approach, Mater. Res. Express, vol. 6, no. 10, pp. 105704, 2019. DOI: 10.1088/2053-1591/ab3880.
  • X. Yang, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, and J. Yan, 3D porous oxidation‐resistant MXene/Graphene architectures induced by in situ Zinc template toward high‐performance supercapacitors, Adv. Funct. Mater., vol. 31, no. 20, pp. 2101087, 2021. DOI: 10.1002/adfm.202101087.
  • A. Singhal, S. A. Sahu, S. Chaudhary, and J. Baroi, Initial and couple stress influence on the surface waves transmission in material layers with imperfect interface, Mater. Res. Express, vol. 6, no. 10, pp. 105713, 2019. DOI: 10.1088/2053-1591/ab40e2.
  • S. Chaudhary, S. A. Sahu, and A. Singhal, On secular equation of SH waves propagating in pre-stressed and rotating piezo-composite structure with imperfect interface, J. Intelligent Mater. Syst. Struct., vol. 29, no. 10, pp. 2223–2235, 2018. DOI: 10.1177/1045389X18758192.
  • A. Singhal, and S. A. Sahu, Transference of Rayleigh waves in corrugated orthotropic layer over a pre-stressed orthotropic half-space with self weight, Proc. Eng., vol. 173, pp. 972–979, 2017. DOI: 10.1016/j.proeng.2016.12.164.
  • B. Ray, Thermal shock and thermal fatigue on delamination of glass-fiber-reinforced polymeric composites, J. Reinforce. Plastics Compos., vol. 24, no. 1, pp. 111–116, 2005. DOI: 10.1177/0731684405042953.
  • V. Tahouneh, Vibrational analysis of sandwich sectorial plates with functionally graded sheets reinforced by aggregated carbon nanotube, J. Sandwich Struct. Mater., vol. 22, no. 5, pp. 1496–1541, 2020. DOI: 10.1177/1099636218785972.
  • V. Tahouneh, M. H. Naei, and M. M. Mashhadi, Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: molecular and continuum approaches, Steel Compos. Struct., vol. 34, pp. 261–277, 2020.
  • V. Tahouneh, M. H. Naei, and M. M. Mashhadi, The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic, Steel Compos. Struct., vol. 29, pp. 647–657, 2018.
  • V. Tahouneh, M. H. Naei, and M. M. Mashhadi, Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory, Steel Compos. Struct., vol. 33, pp. 717–727, 2019.
  • F. Ebrahimi, S. H. S. Hosseini, and A. Singhal, A comprehensive review on the modeling of smart piezoelectric nanostructures, Struct. Eng. Mech., vol. 74, pp. 611–633, 2020.
  • S. Chaudhary, S. A. Sahu, N. Dewangan, and A. Singhal, Stresses produced due to moving load in a prestressed piezoelectric substrate, Mech. Adv. Mater. Struct., vol. 26, no. 12, pp. 1028–1041, 2019. DOI: 10.1080/15376494.2018.1430265.
  • A. Singhal, S. A. Sahu, S. Nirwal, and S. Chaudhary, Anatomy of flexoelectricity in micro plates with dielectrically highly/weakly and mechanically complaint interface, Mater. Res. Express, vol. 6, no. 10, pp. 105714, 2019. DOI: 10.1088/2053-1591/ab3f52.
  • F. Ebrahimi, M. Karimiasl, and A. Singhal, Magneto-electro-elastic analysis of piezoelectric–flexoelectric nanobeams rested on silica aerogel foundation, Eng. Comput., vol. 37, no. 2, pp. 1007–1014, 2021. DOI: 10.1007/s00366-019-00869-z.
  • A. Singhal, H. Mohammad Sedighi, F. Ebrahimi, and I. Kuznetsova, Comparative study of the flexoelectricity effect with a highly/weakly interface in distinct piezoelectric materials (PZT-2, PZT-4, PZT-5H, LiNbO3, BaTiO3), Waves Random Complex Med., vol. 31, no. 6, pp. 1780–1798, 2021. DOI: 10.1080/17455030.2019.1699676.
  • T. Y. Zhao, Y. S. Cui, Y. Q. Wang, and H. G. Pan, Vibration characteristics of graphene nanoplatelet reinforced disk-shaft rotor with eccentric mass, Mech. Adv. Mater. Struct., vol. 29, no. 24, pp. 3485–3498, 2022. DOI: 10.1080/15376494.2021.1904525.
  • D. G. Ninh, N. M. Quan, and V. N. V. Hoang, Thermally vibrational analyses of functionally graded graphene nanoplatelets reinforced funnel shells with different complex shapes surrounded by elastic foundation, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 4654–4676, 2022. DOI: 10.1080/15376494.2021.1934763.
  • A. Rahimi and A. Alibeigloo, High-accuracy approach for thermomechanical vibration analysis of FG-Gplrc fluid-conveying viscoelastic thick cylindrical shell, Int. J. Appl. Mech., vol. 12, no. 07, pp. 2050073, 2020. DOI: 10.1142/S1758825120500738.
  • K. Chu, C. Jia, and W. Li, Effective thermal conductivity of graphene-based composites, Appl. Phys. Lett., vol. 101, no. 12, pp. 121916, 2012. DOI: 10.1063/1.4754120.
  • C. Chang-Qing and S. Ya-Peng, Stability analysis of piezoelectric circular cylindrical shells, J. Appl. Mech., vol. 64, pp. 847–852, 1997.
  • P. H. Cabral, E. Carrera, H.E.A.A. dos Santos, P.H.G. Galeb, A. Pagani, D. Peeters, and A.P. Prado, Experimental and numerical vibration correlation of pre-stressed laminated reinforced panel, Mech. Adv. Mater. Struct., vol. 29, no. 15, pp. 2165–2175, 2022. DOI: 10.1080/15376494.2020.1853285.
  • B. Yang, S. Kitipornchai, Y.-F. Yang, and J. Yang, 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates, Appl. Math. Modell., vol. 49, pp. 69–86, 2017. DOI: 10.1016/j.apm.2017.04.044.
  • A. Alibeigloo, Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method, Mech. Adv. Mater. Struct., vol. 25, no. 9, pp. 766–784, 2018. DOI: 10.1080/15376494.2017.1308585.
  • E. Sobhani, and A. R. Masoodi, Differential quadrature technique for frequencies of the coupled circular arch–arch beam bridge system, Mech. Adv. Mater. Struct., vol. 30, no. 4, pp. 770–781, 2023. DOI: 10.1080/15376494.2021.2023920.
  • V. L. Nguyen, M. T. Tran, S. Limkatanyu, and J. Rungamornrat, Free vibration analysis of rotating FGP sandwich cylindrical shells with metal-foam core layer, Mech. Adv. Mater. Struct., pp. 1–14, 2022. DOI: 10.1080/15376494.2022.2073410.
  • F. Tornabene, N. Fantuzzi, F. Ubertini, and E. Viola, Strong formulation finite element method based on differential quadrature: a survey, Appl. Mech. Rev., vol. 67, no. 2, pp. 020801, 2015. DOI: 10.1115/1.4028859.
  • S. N. Nguyen, M. Cho, J. S. Kim, and J. W. Han, Improved thermo-mechanical-viscoelastic analysis of laminated composite structures via the enhanced Lo–Christensen–Wu theory in the Laplace domain, Mech. Adv. Mater. Struct., pp. 1–17, 2022. DOI: 10.1080/15376494.2022.2064571.
  • F. Durbin, Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method, Comput. J., vol. 17, no. 4, pp. 371–376, 1974. DOI: 10.1093/comjnl/17.4.371.
  • D. Liu, Z. Li, S. Kitipornchai, and J. Yang, Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates, Compos. Struct., vol. 229, pp. 111453, 2019. DOI: 10.1016/j.compstruct.2019.111453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.