280
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Finite element analysis of functionally graded magneto-electro-elastic porous cylindrical shells subjected to thermal loads

, , , &
Pages 4003-4018 | Received 14 Jan 2023, Accepted 01 Mar 2023, Published online: 21 Mar 2023

References

  • J.V. Suchtelen, Product properties: A new application of composite materials, Philips Res. Reports., vol. 27, pp. 28–37, 1972.
  • P. Franciosi, Transversally isotropic magneto-electro-elastic composites with co-(dis) continuous phases, Int. J. Solids Struct., vol. 50, no. 6, pp. 1013–1031, 2013. DOI: 10.1016/j.ijsolstr.2012.12.005.
  • A. Yousefi-Koma, and D.G. Zimcik, Applications of smart structures to aircraft for performance enhancement, Can. Aeronaut. Space J., vol. 49, no. 4, pp. 163–172, 2003. DOI: 10.5589/q03-014.
  • N.I. Zheludev, E. Plum, J. Valente, I.J. Youngs, and J.Y. Ou, A magneto-electro-optical effect in a plasmonic nanowire material, Nat. Commun., vol. 6, no. 1, pp. 1–6, 2015. DOI: 10.1038/ncomms8021.
  • H. Liu, and Z. Lv, Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams, Compos. Struct., vol. 202, pp. 615–624, 2018. DOI: 10.1016/j.compstruct.2018.03.024.
  • M. Shirbani, M. Shishesaz, H. Sedighi, and A. Hajnayeb, Parametric modeling of a novel longitudinal vibration-based energy harvester using magneto-electro-elastic materials, Microsyst. Technol., vol. 23, no. 12, pp. 5989–6004, 2017. DOI: 10.1007/s00542-017-3402-0.
  • M. Shirbani, M. Shishesaz, H. Sedighi, and A. Hajnayeb, Design and analytical modeling of magneto-electromechanical characteristics of a novel magneto-electro-elastic vibration-based energy harvesting system, J. Sound Vib., vol. 425, pp. 149–169, 2018. DOI: 10.1016/j.jsv.2018.03.030.
  • E. Pan, and H. Heyliger, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, J. Sound Vib., vol. 252, no. 3, pp. 429–442, 2002. DOI: 10.1006/jsvi.2001.3693.
  • C.P. Wu, and Y.H. Tsai, Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales, Eur. J. Mech., vol. 29, no. 2, pp. 166–181, 2010. DOI: 10.1016/j.euromechsol.2009.09.004.
  • J. Sladek, V. Sladek, S. Krahulec, and E. Pan, The MLPG analyses of large deflections of magneto-electro-elastic plates, Eng. Anal. Bound. Elem., vol. 37, no. 4, pp. 673–682, 2013. DOI: 10.1016/j.enganabound.2013.02.001.
  • F. Ebrahimi, and M. R. Barati, A nonlocal higher-order magneto electro visco-elastic beam model for dynamic analysis of smart nanostructures, Int. J. Eng. Sci., vol. 107, pp. 183–196, 2016. DOI: 10.1016/j.ijengsci.2016.08.001.
  • F. Ramirez, P.R. Heyliger, and E. Pan, Free vibration response of two-dimensional magneto-electro-elastic laminated plates, J. Sound Vib., vol. 292, no. 3–5, pp. 626–644, 2006. DOI: 10.1016/j.jsv.2005.08.004.
  • A. Milazzo, C. Orlando, and A. Alaimo, An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem, Smart Mater. Struct., vol. 18, no. 8, pp. 085012, 2009. DOI: 10.1088/0964-1726/18/8/085012.
  • S.C. Kattimani, and M.C. Ray, Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates, Compos. Struct., vol. 114, pp. 51–63, 2014. DOI: 10.1016/j.compstruct.2014.03.050.
  • S.C. Kattimani, and M.C. Ray, Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells, Int. J. Mech. Mater. Des., vol. 10, no. 4, pp. 351–378, 2014. DOI: 10.1007/s10999-014-9252-3.
  • M. Vaezi, M.M. Shirbani, and A. Hajnayeb, Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads, Physica E, vol. 75, pp. 280–286, 2016. DOI: 10.1016/j.physe.2015.09.019.
  • R.K. Bhangale, and N. Ganesan, Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method, J. Sound Vib., vol. 294, no. 4–5, pp. 1016–1038, 2006. DOI: 10.1016/j.jsv.2005.12.030.
  • R.G. Lage, C.A.M. Soares, J.N. Reddy, and C.M.M. Soares, Layerwise partial mixed finite element analysis of magneto-electro-elastic plates, Comput. Struct., vol. 82, no. 17–19, pp. 1293–1301, 2004. DOI: 10.1016/j.compstruc.2004.03.026.
  • M. Vinyas, K.K. Sunny, D. Harursampath, T. Nguyen-Thoi, and M.A.R. Loja, Influence of interphase on the multi-physics coupled frequency of threephase smart magneto-electro-elastic composite plates, Compos. Struct., vol. 226, pp. 111254, 2019. DOI: 10.1016/j.compstruct.2019.111254.
  • M. Vinyas, A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods, Composites Part B, vol. 158, pp. 286–301, 2019. DOI: 10.1016/j.compositesb.2018.09.086.
  • M. Vinyas, On frequency response of porous functionally graded magneto-electroelastic circular and annular plates with different electro-magnetic conditions using HSDT, Compos. Struct., vol. 240, pp. 112044, 2020. DOI: 10.1016/j.compstruct.2020.112044.
  • V. Mahesh, and D. Harursampath, Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by cnts using fem, Eng. Comput., vol. 38, no. 2, pp. 1029–1051, 2022. DOI: 10.1007/s00366-020-01098-5.
  • M. Vinyas, and D. Harursampath, Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes, Compos. Struct., vol. 253, pp. 112749, 2020. DOI: 10.1016/j.compstruct.2020.112749.
  • M. Vinyas, D. Harursampath, and S.C. Kattimani, On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods, Defence Technol., vol. 17, no. 1, pp. 287–303, 2021. DOI: 10.1016/j.dt.2020.03.012.
  • V. Mahesh, and D. Harursampath, Nonlinear deflection analysis of cnt/magneto-electro-elastic smart shells under multi-physics loading, Mech. Adv. Mater. Struct., vol. 29, no. 7, pp. 1047–1071, 2022. DOI: 10.1080/15376494.2020.1805059.
  • M. Vinyas, Nonlinear deflection of carbon nanotube reinforced multiphase magneto-electro-elastic plates in thermal environment considering pyrocoupling effects, Math. Methods Appl. Sci., pp. 1–21, 2020.
  • M. Vinyas, Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with cnt reinforced magneto-electro-elastic facing subjected to electromagnetic loads in thermal environment, Eur. Phys. J. Plus, vol. 796, pp. 1–30, 2021.
  • B. Biju, N. Ganesan, and K. Shankar, Dynamic response of multiphase magnetoelectroelastic sensors using 3d magnetic vector potential approach, IEEE Sensors J., vol. 11, no. 9, pp. 2169–2176, 2011. DOI: 10.1109/JSEN.2011.2112346.
  • S.Q. Zhang, Y.F. Zhao, X. Wang, M. Chen, and R. Schmidt, Static and dynamic analysis of functionally graded magneto-electro-elastic plates and shells, Compos. Struct., vol. 281, pp. 114950, 2022. DOI: 10.1016/j.compstruct.2021.114950.
  • Y.F. Zhao, S.Q. Zhang, X. Wang, S.Y. Ma, G.Z. Zhao, and Z. Kang, Nonlinear analysis of carbon nanotube reinforced functionally graded plates with magneto-electro-elastic multiphase matrix, Compos. Struct., vol. 297, pp. 115969, 2022. DOI: 10.1016/j.compstruct.2022.115969.
  • W.Q. Chen, Y.L. Kang, and H.J. Ding, On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates, J. Sound Vib., vol. 279, no. 1–2, pp. 237–251, 2005. DOI: 10.1016/j.jsv.2003.10.033.
  • T.M. Badri, and H.H. Al-Kayi, Analytical solution for simply supported and multilayered magneto-thermo-electro-elastic plates, Asian J. Sci. Res., vol. 6, no. 2, pp. 236–244, 2013.
  • A. Kumaravel, N. Ganesan, and R. Sethuraman, Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment, Multidiscipline Modeling in Materials and Structures, vol. 3, no. 4, pp. 461–476, 2007. DOI: 10.1163/157361107782106401.
  • A. Kumaravel, N. Ganesan, and R. Sethuraman, Steady-state analysis of a threelayered electro-magneto-elastic strip in a thermal environment, Smart Mater. Struct., vol. 16, no. 2, pp. 282–295, 2007. DOI: 10.1088/0964-1726/16/2/006.
  • G.T. Monaco, N. Fantuzzi, F. Abbrocino, and R. Luciano, Trigonometric solution for the bending analysis of magneto-electro-elastic strain gradient nonlocal nanoplates in hygro-thermal environment, Mathematics., vol. 9, no. 5, pp. 567, 2021. DOI: 10.3390/math9050567.
  • F. Ebrahimi, and M.R. Barati, Investigating physical field effects on the size-dependent dynamic behavior of inhomogeneous nanoscale plates, Eur. Phys. J. Plus, vol. 132, no. 2, pp. 1–19, 2017.
  • B.L. Wang, and O.P. Niraula, Transient thermal fracture analysis of transversely isotropic magneto-electro-elastic materials, J. Thermal Stress., vol. 30, no. 3, pp. 297–317, 2007. DOI: 10.1080/01495730601187935.
  • J. Ma, L.L. Ke, Y.S. Wang, Y. Sheng, and S.M. Aizikovich, Thermal contact of magneto-electro-elastic materials subjected to a conducting flat punch, J. Strain Anal. Eng. Des., vol. 50, no. 7, pp. 513–527, 2015. DOI: 10.1177/0309324715591939.
  • P. Kondaiah, K. Shankar, and N. Ganesan, Studies on magneto-electro-elastic cantilever beam under thermal environment, Coupled Syst. Mech., vol. 1, no. 2, pp. 205–217, 2012. DOI: 10.12989/csm.2012.1.2.205.
  • W.J. Feng, E. Pan, and X. Wang, Stress analysis of a penny-shaped crack in a magneto-electro-thermo-elastic layer under uniform heat flow and shear loads, J. Thermal Stress., vol. 31, no. 6, pp. 497–514, 2008. DOI: 10.1080/01495730801912744.
  • L. Zhou, H. Yang, L. Ma, S. Zhang, X. Li, S. Ren, and M. Li, On the static analysis of inhomogeneous magneto-electro-elastic plates in thermal environment via element-free galerkin method, Eng. Anal. Bound. Elem., vol. 134, pp. 539–552, 2022. DOI: 10.1016/j.enganabound.2021.11.002.
  • M. Vinyas, and S.C. Kattimani, A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading, Struct. Eng. Mech., vol. 5, pp. 519–535, 2017.
  • M. Vinyas, and S.C. Kattimani, Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates, Compos. Struct., vol. 185, pp. 51–64, 2018. DOI: 10.1016/j.compstruct.2017.10.073.
  • M. Vinyas, S.C. Kattimani, M.A.R. Loja, and M. Vishwas, Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment, Mater. Res. Express., vol. 5, no. 12, pp. 125702, 2018. DOI: 10.1088/2053-1591/aae0c8.
  • M. Vinyas, J.S. Piyush, and K. Subhaschandra, Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electrothermo- elastic plate, J. Intell. Mater. Syst. Struct., vol. 29, no. 7, pp. 1430–1455, 2018.
  • M. Vinyas, and S.C. Kattimani, Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads, Compos. Struct., vol. 163, pp. 216–237, 2017. DOI: 10.1016/j.compstruct.2016.12.040.
  • M. Vinyas, and D. Harursampath, Computational evaluation of electro-magnetic circuits effect on the coupled response of multifunctional magneto-electro-elastic composites plates exposed to hygrothermal fields, Proce. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 235, no. 15, pp. 2832–2850, 2021. 2021. DOI: 10.1177/0954406220954485.
  • M. Vinyas, S.C. Kattimani, and S. Joladarashi, Hygrothermal coupling analysis of magnetoelectroelastic beams using finite element methods, J. Thermal Stress., vol. 41, no. 8, pp. 1063–1079, 2018. DOI: 10.1080/01495739.2018.1447856.
  • M. Vinyas, and S.C. Kattimani, Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis, Compos. Struct., vol. 180, pp. 617–637, 2017. DOI: 10.1016/j.compstruct.2017.08.015.
  • M. Vinyas, and S.C. Kattimani, Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory, Compos. Struct., vol. 202, pp. 1339–1352, 2018. DOI: 10.1016/j.compstruct.2018.06.069.
  • J. Sladek, V. Sladek, P. Solek, and Ch Zhang, Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG, Int. J. Solids Struct., vol. 47, no. 10, pp. 1381–1391, 2010. DOI: 10.1016/j.ijsolstr.2010.01.025.
  • S. Ren, G. Meng, J. Wang, L.M. Zhou, and H.W. Zhao, A stabilized node-based smoothed radial point interpolation method for functionally graded magneto-electro-elastic structures in thermal environment, Compos. Struct., vol. 234, pp. 111674, 2020. DOI: 10.1016/j.compstruct.2019.111674.
  • G.L. She, Guided wave propagation of porous functionally graded plates: The effect of thermal loadings, J. Thermal Stress., vol. 10, no. 44, pp. 1289–1305, 2021.
  • L.S. Esayas, and S. Kattimani, Effect of porosity on active damping of geometrically nonlinear vibrations of a functionally graded magneto-electro-elastic plate, Defence Technol., vol. 18, no. 6, pp. 891–906, 2022. DOI: 10.1016/j.dt.2021.04.016.
  • H. Liu, H. Liu, and J. Yang, Vibration of fg magneto-electro-viscoelastic porous nanobeams on visco-pasternak foundation, Composites Part B, vol. 155, pp. 244–256, 2018. DOI: 10.1016/j.compositesb.2018.08.042.
  • Kiran Mc, and S.C. Kattimani, Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: A finite element study, Eur. J. Mech. A Solids, vol. 71, pp. 258–277, 2018.
  • M. Vinyas, and D. Harursampath, Large deflection analysis of functionally graded magneto-electro-elastic porous flat panels, Eng. Comput., vol. 38, no. S2, pp. 1615–1634, 2022. DOI: 10.1007/s00366-020-01270-x.
  • M. Vinyas, Porosity effect on the nonlinear deflection of functionally graded magneto-electro- elastic smart shells under combined loading, Mech. Adv. Mater. Struct., vol. 29, no. 19, pp. 2707–2725, 2022.
  • T. Nguyen-Thoi, K.D. Ly, T.T. Truong, S.N. Nguyen, and M. Vinyas, Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed fem and metaheuristic algorithm, Eng. Struct., vol. 259, pp. 114062, 2022. DOI: 10.1016/j.engstruct.2022.114062.
  • P. Kondaiah, K. Shankar, and N. Ganesan, Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate, Coupled Syst. Mech., vol. 2, no. 1, pp. 1–22, 2013. DOI: 10.12989/csm.2013.2.1.001.
  • F. Ebrahimi, A. Jafari, and M.R. Barati, Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations, Thin-Walled Struct., vol. 119, pp. 33–46, 2017. DOI: 10.1016/j.tws.2017.04.002.
  • K.S. Na, and J.H. Kim, Three-dimensional thermal buckling analysis of functionally graded materials, Composites Part B, vol. 35, no. 5, pp. 429–437, 2004. DOI: 10.1016/j.compositesb.2003.11.013.
  • X.L. Zhang, Q. Xu, X. Zhao, Y.H. Li, and J. Yang, Nonlinear analyses of magneto-electro-elastic laminated beams in thermal environments, Compos. Struct., vol. 234, pp. 111524, 2020. DOI: 10.1016/j.compstruct.2019.111524.
  • S.Q. Zhang, Nonlinear Analysis of Thin-Walled Smart Structures. Springer Tracts in Mechanical Engineering. Springer, 2021.
  • O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, The Finite Element Method: its Basis and Fundamentals, Seventh Edition, Butterworth-Heinemann, 2013.
  • A. Alaimo, I. Benedetti, and A. Milazzo, A finite element formulation for large deflection of multilayered magneto-electro-elastic plates, Compos. Struct., vol. 107, pp. 643–653, 2014. DOI: 10.1016/j.compstruct.2013.08.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.