198
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Finite element-based phase field simulation of complex branching crack propagation under different loads

ORCID Icon, , , &
Pages 4269-4279 | Received 18 Nov 2022, Accepted 16 Mar 2023, Published online: 29 Mar 2023

References

  • C. Miehe, F. Welschinger, and M. Hofacker, Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations, Int. J. Numer. Meth. Engng., vol. 83, no. 10, pp. 1273–1311, 2010. DOI: 10.1002/nme.2861.
  • Q.Q. Dong, G.W. Ma, W.Q. Wang, and Q.S. Duan, Non-tip failure of smooth fissure in 3D printed specimens, Eng. Fract. Mech., vol. 234, pp. 107112, 2020. DOI: 10.1016/j.engfracmech.2020.107112.
  • H. Wang, Y. Gao, and Y. Zhou, Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression, Theor. Appl. Fract. Mech., vol. 117, pp. 103167, 2022. DOI: 10.1016/j.tafmec.2021.103167.
  • W.G.P. Kumari, D.M. Beaumont, P.G. Ranjith, M.S.A. Perera, B.L. Avanthi Isaka, and M. Khandelwal, An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments, Geomech. Geophys. Geo-energ. Geo-resour., vol. 5, no. 1, pp. 47–64, 2019. DOI: 10.1007/s40948-018-0098-2.
  • Q.Q. Dong, H.J. Wei, and G.W. Ma, Failure mechanism of S-shaped fissure in brittle materials under uniaxial tension: Experimental and numerical analyses, Int. J. Solids Struct., vol. 191-192, pp. 486–496, 2020. DOI: 10.1016/j.ijsolstr.2020.01.001.
  • C. Zhou, M. Hu, D. Xie, Z. Shu, and J. He, Research on crack propagation of 3D printed material with complex cracks based on the phase-field fracture model, Acta Mech., vol. 233, no. 10, pp. 4247–4271, 2022. DOI: 10.1007/s00707-022-03308-1.
  • L.N.Y. Wong, and H.H. Einstein, Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation, Rock Mech Rock Eng., vol. 42, no. 3, pp. 475–511, 2009. DOI: 10.1007/s00603-008-0002-4.
  • S.Q. Yang, Y.H. Dai, L.J. Han, and Z.Q. Jin, Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression, Eng. Fract. Mech., vol. 76, no. 12, pp. 1833–1845, 2009. DOI: 10.1016/j.engfracmech.2009.04.005.
  • R.H.C. Wong, K.T. Chau, C.A. Tang, and P. Lin, Analysis of crack coalescence in rock-like materials containing three flaws—Part I: Experimental approach, Int. J. Rock Mech. Min. Sci., vol. 38, no. 7, pp. 909–924, 2001. DOI: 10.1016/S1365-1609(01)00064-8.
  • D. Zhang and Q. Dong, Fracturing and damage of 3d-Printed materials with two intermittent fissures under compression, Materials, vol. 13, no. 7, pp. 1607, 2020. DOI: 10.3390/ma13071607.
  • N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Engng., vol. 46, no. 1, pp. 131–150, 1999. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  • N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for three‐dimensional crack modelling, Int. J. Numer. Meth. Engng., vol. 48, no. 11, pp. 1549–1570, 2000. DOI: 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A.
  • K. Mishra, A. Lal, and B.M. Sutaria, Numerical analysis of bi-material plate of various material distributions with crack and other discontinuities under thermo-mechanical loadings using XFEM, Int J Steel Struct., vol. 22, no. 3, pp. 708–729, 2022. DOI: 10.1007/s13296-022-00601-6.
  • K. Mishra, A. Lal, and B.M. Sutaria, XFEM based thermo-elastic numerical analysis of FGMs with various discontinuities, Mech. Based Des. Struct. Mach., pp. 1–32, 2022. DOI: 10.1080/15397734.2022.2082469.
  • R.H. Peerlings, R. de Borst, W.M. Brekelmans, and J. de Vree, Gradient enhanced damage for quasi‐brittle materials, Int. J. Numer. Meth. Engng., vol. 39, no. 19, pp. 3391–3403, 1996. DOI: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D.
  • S. Sarkar, I.V. Singh, B.K. Mishra, A.S. Shedbale, and L.H. Poh, A comparative study and ABAQUS implementation of conventional and localizing gradient enhanced damage models, Finite Elem. Anal. Des., vol. 160, pp. 1–31, 2019. DOI: 10.1016/j.finel.2019.04.001.
  • G.A. Francfort and J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids., vol. 46, no. 8, pp. 1319–1342, 1998. DOI: 10.1016/S0022-5096(98)00034-9.
  • A.A. Griffith. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Series A, vol. 221. pp. 163–198, 1921.
  • B. Bourdin, G.A. Francfort, and J.J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, vol. 48, no. 4, pp. 797–826, 2000. DOI: 10.1016/S0022-5096(99)00028-9.
  • C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., vol. 199, no. 45-48, pp. 2765–2778, 2010. DOI: 10.1016/j.cma.2010.04.011.
  • J.Y. Wu, V.P. Nguyen, C.T. Nguyen, D. Sutula, S. Sinaie, and S.P. Bordas, Phase-field modeling of fracture, Adv. Appl. Mech., vol. 53, pp. 1–183, 2020.
  • M. Ambati, T. Gerasimov, and L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., vol. 55, no. 2, pp. 383–405, 2015. DOI: 10.1007/s00466-014-1109-y.
  • H. Amor, J.J. Marigo, and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, vol. 57, no. 8, pp. 1209–1229, 2009. DOI: 10.1016/j.jmps.2009.04.011.
  • G. Molnár, and A. Gravouil, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., vol. 130, pp. 27–38, 2017. DOI: 10.1016/j.finel.2017.03.002.
  • H.M. Hilber, T.J. Hughes, and R.L. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engng. Struct. Dyn., vol. 5, no. 3, pp. 283–292, 1977. DOI: 10.1002/eqe.4290050306.
  • G. Molnar, A. Gravouil, R. Seghir, and J. Réthoré, An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation, Comput. Methods Appl. Mech. Eng., vol. 365, pp. 113004, 2020. DOI: 10.1016/j.cma.2020.113004.
  • G. Liu, Q. Li, M.A. Msekh, and Z. Zuo, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., vol. 121, pp. 35–47, 2016. DOI: 10.1016/j.commatsci.2016.04.009.
  • M. Hayes, D. Edwards, and A. Shah, 2015. Fractography in Failure Analysis of Polymers, William Andrew, Norwich, NY.
  • Z.X. Zhang, 2016. Rock Fracture and Blasting: theory and Applications, Butterworth-Heinemann, Oxford.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.