134
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Thermo-mechanical fatigue progressive analysis of delamination in composite laminates

&
Pages 4280-4294 | Received 06 Jan 2023, Accepted 08 Mar 2023, Published online: 18 Apr 2023

References

  • M. Samimi, J. Van Dommelen, and M. Geers, A self-adaptive finite element approach for simulation of mixed-mode delamination using cohesive zone models, Eng. Fract. Mech., vol. 78, no. 10, pp. 2202–2219, 2011. DOI: 10.1016/j.engfracmech.2011.04.010.
  • M. Samimi, J. Van Dommelen, and M. Geers, A three-dimensional self-adaptive cohesive zone model for interfacial delamination, Comput. Methods Appl. Mech. Eng., vol. 200, no. 49–52, pp. 3540–3553, 2011. DOI: 10.1016/j.cma.2011.08.021.
  • P.P. Camanho, C.G. Davila, and M. De Moura, Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater., vol. 37, no. 16, pp. 1415–1438, 2003. DOI: 10.1177/0021998303034505.
  • M. Kenane and M. Benzeggagh, Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading, Compos. Sci. Technol., vol. 57, no. 5, pp. 597–605, 1997. DOI: 10.1016/S0266-3538(97)00021-3.
  • P. Robinson, U. Galvanetto, D. Tumino, G. Bellucci, and D. Violeau, Numerical simulation of fatigue-driven delamination using interface elements, Int. J. Numer. Methods Eng., vol. 63, no. 13, pp. 1824–1848, 2005. DOI: 10.1002/nme.1338.
  • G. Alfano and M.A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues, Int. J. Numer. Methods Eng., vol. 50, no. 7. pp. 1701–1736.
  • D. Tumino and F. Cappello, Simulation of fatigue delamination growth in composites with different mode mixtures, J. Compos. Mater., vol. 41, no. 20, pp. 2415–2441, 2007. DOI: 10.1177/0021998307075439.
  • T. Rabczuk and T. Belytschko, Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International journal for numerical methods in engineering, vol. 61, no. 13, pp.2316–2343, 2004.
  • T. Rabczuk and T. Belytschko, A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng., vol. 196, no. 29–30, pp. 2777–2799, 2007. DOI: 10.1016/j.cma.2006.06.020.
  • B. Landry, G. LaPlante, and L.R. LeBlanc, Environmental effects on mode ii fatigue delamination growth in an aerospace grade carbon/epoxy composite, Compos. Part A: Appl. Sci. Manuf., vol. 43, no. 3, pp. 475–485, 2012. DOI: 10.1016/j.compositesa.2011.11.015.
  • M. May and S.R. Hallett, A combined model for initiation and propagation of damage under fatigue loading for cohesive interface elements, Compos. Part A: Appl. Sci. Manuf., vol. 41, no. 12, pp. 1787–1796, 2010. DOI: 10.1016/j.compositesa.2010.08.015.
  • Z. Sun, L. Benabou, and P.R. Dahoo, Prediction of thermo-mechanical fatigue for solder joints in power electronics modules under passive temperature cycling, Eng. Fract. Mech., vol. 107, pp. 48–60, 2013. DOI: 10.1016/j.engfracmech.2013.05.009.
  • M. Erinc, P. Schreurs, and M. Geers, Integrated numerical–experimental analysis of interfacial fatigue fracture in SnAgCu solder joints, Int. J. Solids Struct., vol. 44, no. 17, pp. 5680–5694, 2007. DOI: 10.1016/j.ijsolstr.2007.01.021.
  • M. Springer, A. Turon, and H. Pettermann, A thermo–mechanical cyclic cohesive zone model for variable amplitude loading and mixed–mode behavior, Int. J. Solids Struct., vol. 159, pp. 257–271, 2019. DOI: 10.1016/j.ijsolstr.2018.10.004.
  • J. Jaśkowiec, A model for heat transfer in cohesive cracks, Comput. Struct., vol. 180, pp. 89–103, 2017. DOI: 10.1016/j.compstruc.2016.01.009.
  • L. Benabou, Z. Sun, and P.-R. Dahoo, A thermo-mechanical cohesive zone model for solder joint lifetime prediction, Int. J. Fatigue, vol. 49, pp. 18–30, 2013. DOI: 10.1016/j.ijfatigue.2012.12.008.
  • K.S. Al-Athel, A.F.M. Arif, and S. Pashah, Behavior and failure of adhesive bonds in pin fin heat sinks using cohesive zone model, Int. J. Adhes. Adhes., vol. 68, pp. 397–406, 2016. DOI: 10.1016/j.ijadhadh.2015.12.016.
  • M. Erinc, P. Schreurs, and M. Geers, Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder, Mech. Mater., vol. 40, no. 10, pp. 780–791, 2008. DOI: 10.1016/j.mechmat.2008.04.005.
  • K.L. Yuzhou Sun, Modeling of thermo-mechanical fracture behaviors based on cohesive segments formulation, Eng. Anal. Bound. Elem., vol. 77, pp. 81–88, 2017.
  • S. Roth and M. Kuna, Numerical study on interfacial damage of sprayed coatings due to thermo-mechanical fatigue[C]// COMPLAS XI: proceedings of the XI International Conference on Computational Plasticity: fundamentals and applications. CIMNE, 2011, pp. 1043–1054.
  • A. Hattiangadi and T. Siegmund, Bridging effects in cracked laminates under thermal gradients, Mech. Res. Commun., vol. 29, no. 6, pp. 457–464, 2002. DOI: 10.1016/S0093-6413(02)00300-2.
  • A. Hattiangadi and T. Siegmund, A thermomechanical cohesive zone model for bridged delamination cracks, J. Mech. Phys. Solids, vol. 52, no. 3, pp. 533–566, 2004. DOI: 10.1016/S0022-5096(03)00122-4.
  • P. Lenarda and M. Paggi, A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates, Comput. Mech., vol. 57, no. 6, pp. 947–963, 2016. DOI: 10.1007/s00466-016-1271-5.
  • I. Özdemir, W. Brekelmans, and M. Geers, A thermo-mechanical cohesive zone model, Comput. Mech., vol. 46, no. 5, pp. 735–745, 2010. DOI: 10.1007/s00466-010-0507-z.
  • R.H. Peerlings, W.M. Brekelmans, R. de Borst, and M.G. Geers, Gradient-enhanced damage modelling of high-cycle fatigue, Int. J. Numer. Methods Eng., vol. 49, no. 12, pp. 1547–1569, 2000. DOI: 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D.
  • D. Li, Delamination and transverse crack growth prediction for laminated composite plates and shells, Comput. Struct., vol. 177, pp. 39–55, 2016. DOI: 10.1016/j.compstruc.2016.07.011.
  • D. Li, X. Zhang, K. Sze, and Y. Liu, Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks, Comput. Mech., vol. 58, no. 4, pp. 657–679, 2016. DOI: 10.1007/s00466-016-1310-2.
  • D. Li, Extended layerwise method of laminated composite shells, Compos. Struct., vol. 136, pp. 313–344, 2016. DOI: 10.1016/j.compstruct.2015.08.141.
  • D. Li and J. Fish, Thermomechanical extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks, Compos. Struct., vol. 185, pp. 665–683, 2018. DOI: 10.1016/j.compstruct.2017.11.050.
  • D. Li, Y. Liu, and X. Zhang, An extended layerwise method for composite laminated beams with multiple delaminations and matrix cracks, Int. J. Numer. Methods Eng., vol. 101, no. 6, pp. 407–434, 2015. DOI: 10.1002/nme.4803.
  • D. Li, F. Zhang, and J. Xu, Incompatible extended layerwise method for laminated composite shells, Int. J. Mech. Sci., vol. 119, pp. 243–252, 2016. DOI: 10.1016/j.ijmecsci.2016.10.022.
  • D. Li and Z. Yun, Thermo-mechanical progressive analysis on multiple delaminations in composite laminates, Contin. Mech. Thermodyn., vol. 34, no. 2, pp. 341–366. 2022.
  • J. Mazars, A description of micro- and macroscale damage of concrete structures, Eng. Fract. Mech., vol. 25, no. 5–6, pp. 729–737, 1986. DOI: 10.1016/0013-7944(86)90036-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.