193
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A micromechanical damage-healing model for encapsulation-based self-healing polymer composites under tensile loading

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4295-4308 | Received 18 Nov 2022, Accepted 19 Mar 2023, Published online: 03 Apr 2023

References

  • L. Zhai, A. Narkar, and K. Ahn, Self-healing polymers with nanomaterials and nanostructures, Nano Today., vol. 30, p. 100826, 2020. DOI: 10.1016/j.nantod.2019.100826.
  • M. Kosarli, D.G. Bekas, K. Tsirka, D. Baltzis, D.T. Vaimakis-Tsogkas, S. Orfanidis, G. Papavassiliou, and A.S. Paipetis, Microcapsule-based self-healing materials: healing efficiency and toughness reduction vs. capsule size, Compos. B. Eng., vol. 171, pp. 78–86, 2019. DOI: 10.1016/j.compositesb.2019.04.030.
  • D.G. Bekas, K. Tsirka, D. Baltzis, and A.S. Paipetis, Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques, Compos. B. Eng., vol. 87, pp. 92–119, 2016. DOI: 10.1016/j.compositesb.2015.09.057.
  • F. Ahangaran, M. Hayaty, A.H. Navarchian, Y. Pei, and F. Picchioni, Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly(methyl methacrylate) shell, Polym. Test., vol. 73, pp. 395–403, 2019. DOI: 10.1016/j.polymertesting.2018.11.041.
  • R. Jahadi, H. Beheshti, M. Heidari-Rarani, and A.H. Navarchian, Effect of agitation speed on microencapsulation of healing agent in PMMA shell and study on the mechanical properties of epoxy/PMMA microcapsules, Smart Struct. Syst., vol. 27, no. 6, pp. 1001–1010, 2021. DOI: 10.12989/sss.2021.27.6.1001.
  • C. Oucif, G.Z. Voyiadjis, and T. Rabczuk, Modeling of damage-healing and nonlinear self-healing concrete behavior: application to coupled and uncoupled self-healing mechanisms, Theor. Appl. Fract. Mech., vol. 96, pp. 216–230, 2018. DOI: 10.1016/j.tafmec.2018.04.010.
  • S.A. Ponnusami, J. Krishnasamy, S. Turteltaub, and S. van der Zwaag, A cohesive-zone crack healing model for self-healing materials, Int. J. Solids Struct., vol. 134, pp. 249–263, 2018. DOI: 10.1016/j.ijsolstr.2017.11.004.
  • A.A. Alsheghri and R.K. Abu Al-Rub, Thermodynamic-based cohesive zone healing model for self-healing materials, Mech. Res. Commun., vol. 70, pp. 102–113, 2015. DOI: 10.1016/j.mechrescom.2015.10.003.
  • A.A. Alsheghri and R.K. Abu Al-Rub, Finite element implementation and application of a cohesive zone damage-healing model for self-healing materials, Eng. Fract. Mech., vol. 163, pp. 1–22, 2016. DOI: 10.1016/j.engfracmech.2016.06.010.
  • T. Gentieu, A. Catapano, J. Jumel, and J. Broughton, A mean-field homogenisation scheme with CZM-based interfaces describing progressive inclusions debonding, Compos. Struct., vol. 229, p. 111398, 2019. DOI: 10.1016/j.compstruct.2019.111398.
  • D. Zeka, A. Catapano, P.M. Mariano, M. Montemurro, R. Poupart, O. Mondain-Monval, J. Delcroix, and P. Rublon, Non-linear homogenization of polymer composites with porous inclusions, Mech. Mater., vol. 168, p. 104276, 2022. DOI: 10.1016/j.mechmat.2022.104276.
  • M. Delucia, A. Catapano, M. Montemurroa, and J. Pailhés, A stochastic approach for predicting the temperature-dependent elastic properties of cork-based composites, Mech. Mater., vol. 145, p. 103399, 2020. DOI: 10.1016/j.mechmat.2020.103399.
  • M. Montemurro, T. Roiné, and J. Pailhès, Multi-scale design of multi-material lattice structures through a CAD-compatible topology optimisation algorithm, Eng. Struct., vol. 273, p. 115009, 2022. DOI: 10.1016/j.engstruct.2022.115009.
  • G. Bertolino and M. Montemurro, Two-scale topology optimisation of cellular materials under mixed boundary conditions, Int. J. Mech. Sci., vol. 216, p. 106961, 2022. DOI: 10.1016/j.ijmecsci.2021.106961.
  • M. Montemurro, G. Bertolino, and T. Roiné, A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology, Compos. Struct., vol. 258, p. 113360, 2021. DOI: 10.1016/j.compstruct.2020.113360.
  • F.A. Gilabert, D. Garoz, and W. Van Paepegem, Stress concentrations and bonding strength in encapsulation-based self-healing materials, Mater. Des., vol. 67, pp. 28–41, 2015. DOI: 10.1016/j.matdes.2014.11.012.
  • F.A. Gilabert, D. Garoz, and W. Van Paepegem, Numerical study of transitional brittle-to-ductile debonding of a capsule embedded in a matrix, Compos. Interfaces, vol. 24, no. 1, pp. 69–84, 2017. DOI: 10.1080/09276440.2016.1188532.
  • D. Garoz Gómez, F.A. Gilabert, E. Tsangouri, D.V. Hemelrijck, X.K.D. Hillewaere, F.E. Du Prez, and W.V. Paepegem, In-depth numerical analysis of the TDCB specimen for characterization of self-healing polymers, Int. J. Solids Struct., vol. 64–65, pp. 145–154, 2015. DOI: 10.1016/j.ijsolstr.2015.03.020.
  • J. Mergheim and P. Steinmann, Phenomenological modelling of self-healing polymers based on integrated healing agents, Comput Mech., vol. 52, no. 3, pp. 681–692, 2013. DOI: 10.1007/s00466-013-0840-0.
  • W. Zhang, Q. Zheng, A. Ashour, and B. Han, Self-healing cement concrete composites for resilient infrastructures: a review, Compos. B. Eng., vol. 189, p. 107892, 2020. DOI: 10.1016/j.compositesb.2020.107892.
  • H. Shahsavari, R. Naghdabadi, M. Baghani, and S. Sohrabpour, A finite deformation viscoelastic–viscoplastic constitutive model for self-healing materials, Smart Mater. Struct., vol. 25, no. 12, p. 125027, 2016. DOI: 10.1088/0964-1726/25/12/125027.
  • Y. Huang, D. Yan, Z. Yang, and G. Liu, 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations, Eng. Fract. Mech., vol. 163, pp. 37–54, 2016. DOI: 10.1016/j.engfracmech.2016.06.018.
  • A. Ebrahiminiya, M. Khorram, S. Hassanajili, and M. Javidi, Modeling and optimization of the parameters affecting the in-situ microencapsulation process for producing epoxy-based self-healing anti-corrosion coatings, Particuology, vol. 36, pp. 59–69, 2018. DOI: 10.1016/j.partic.2017.01.010.
  • A. Ahmed, K. Sanada, and M. Fanni, A. Abd El-Moneim, A practical methodology for modeling and verification of self-healing microcapsules-based composites elasticity, Compos. Struct., vol. 184, pp. 1092–1098, 2018. DOI: 10.1016/j.compstruct.2017.10.045.
  • A. Ahmed and K. Sanada, Micromechanical modeling and experimental verification of self-healing microcapsules-based composites, Mech. Mater., vol. 131, pp. 84–92, 2019. DOI: 10.1016/j.mechmat.2019.01.020.
  • F. Tian, Z. Zhong, and Y. Pan, A chemo-mechanically coupled model for capsule-based self-healing polymer materials, Int. J. Damage Mech., vol. 28, no. 7, pp. 1075–1094, 2018. DOI: 10.1177/1056789518812979.
  • M. Naderi, N. Apetre, and N. Iyyer, Effect of interface properties on transverse tensile response of fiber-reinforced composites: three-dimensional micromechanical modeling, J. Compos. Mater., vol. 51, no. 21, pp. 2963–2977, 2016. DOI: 10.1177/0021998316681189.
  • M. Marvi-Mashhadi, C.S. Lopes, and J. Llorca, Modelling of the mechanical behavior of polyurethane foams by means of micromechanical characterization and computational homogenization, Int. J. Solids Struct., vol. 146, pp. 154–166, 2018. DOI: 10.1016/j.ijsolstr.2018.03.026.
  • L.M. Mauludin, B.A. Budiman, S.P. Santosa, X. Zhuang, and T. Rabczuk, Numerical modeling of microcrack behavior in encapsulation-based self-healing concrete under uniaxial tension, J. Mech. Sci. Technol., vol. 34, no. 5, pp. 1847–1853, 2020. DOI: 10.1007/s12206-020-0405-z.
  • ASTM Internationl, Standard Test Method for Tensile Properties of Plastics, ASTM D638-14, 2014.
  • M. Heidari-Rarani, K. Bashandeh-Khodaei-Naeini, and S. Mirkhalaf, Micromechanical modeling of the mechanical behavior of unidirectional composites A comparative study, J. Reinf. Plast., vol. 37, pp. 1051–1071, 2018. DOI: 10.1177/0731684418779441.
  • D. Savvas, G. Stefanou, and M. Papadrakakis, Determination of RVE size for random composites with local volume fraction variation, Comput. Methods Appl. Mech. Eng., vol. 305, pp. 340–358, 2016. DOI: 10.1016/j.cma.2016.03.002.
  • e-Xstream Engineering, Digimat Users’ Manual Release 2017.
  • M. Heidari-Rarani and K. Bashandeh-Khodaei-Naeini, Micromechanics based damage model for predicting compression behavior of polymer concretes, Mech. Mater., vol. 117, pp. 126–136, 2018. DOI: 10.1016/j.mechmat.2017.11.004.
  • L.M. Mauludin, X. Zhuang, and T. Rabczuk, Computational modeling of fracture in encapsulation-based self-healing concrete using cohesive elements, Compos. Struct., vol. 196, pp. 63–75, 2018. DOI: 10.1016/j.compstruct.2018.04.066.
  • M.S. Quayum, X. Zhuang, and T. Rabczuk, Computational model generation and RVE design of self-healing concrete, Front. Struct. Civ. Eng., vol. 9, no. 4, pp. 383–396, 2015. DOI: 10.1007/s11709-015-0320-z.
  • D. Roylance, Introduction to fracture mechanics, Technical Report, 2001.
  • E. Totry, C. González, and J. Llorca, Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear, Compos. Sci. Technol., vol. 68, no. 3–4, pp. 829–839, 2008. DOI: 10.1016/j.compscitech.2007.08.023.
  • E. Martin, D. Leguillon, A. Catapano, and N. Carrère, Prediction of interfacial debonding between stiff spherical particles and a soft matrix with the coupled criterion, Theor, Appl. Fract. Mech., vol. 109, pp. 102749, 2020. DOI: 10.1016/j.tafmec.2020.102749.
  • M. Zani, D. Fanteria, A. Catapano, and M. Montemurro, A consistent energy-based cohesive zone model to simulate delamination between differently oriented plies, Compos. Struct., vol. 282, p. 115042, 2022. DOI: 10.1016/j.compstruct.2021.115042.
  • L. Yang, Z. Wu, Y. Cao, and Y. Yan, Micromechanical modelling and simulation of unidirectional fibre-reinforced composite under shear loading, J. Reinf. Plast. Compos., vol. 34, no. 1, pp. 72–83, 2014. DOI: 10.1177/0731684414562873.
  • Abaqus Analysis User’s Manual, Dassault Systemes, Pawtucket, USA, 2020.
  • C. González and J. LLorca, Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling, Compos, Sci. Technol., vol. 67, pp. 2795–2806, 2007. DOI: 10.1016/j.compscitech.2007.02.001.
  • L.P. Canal, J. Segurado, and J. Liorca, Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear, Int. J. Solids Struct., vol. 46, no. 11–12, pp. 2265–2274, 2009. DOI: 10.1016/j.ijsolstr.2009.01.014.
  • T.J. Vaughan and C.T. McCarthy, Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites, Compos. Sci. Technol., vol. 71, no. 3, pp. 388–396, 2011. DOI: 10.1016/j.compscitech.2010.12.006.
  • T.J. Vaughan and C.T. McCarthy, A micromechanical study on the effect of intra-ply properties on transverse shear fracture in fibre reinforced composites, Compos. A Appl. Sci. Manuf., vol. 42, no. 9, pp. 1217–1228, 2011. DOI: 10.1016/j.compositesa.2011.05.004.
  • S.T. Pinho, L. Iannucci, and P. Robinson, Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: part I: development, Compos. A Appl. Sci. Manuf., vol. 37, no. 1, pp. 63–73, 2006. DOI: 10.1016/j.compositesa.2005.04.016.
  • A. Sharma, A. Pandey, D.K. Shukla, and K.N. Pandey, Effect of self-healing dicyclopentadiene microcapsules on fracture toughness of epoxy, Mater. Today, vol. 5, no. 10, pp. 21256–21262, 2018. DOI: 10.1016/j.matpr.2018.06.526.
  • H. Ullah, K.A.M. Azizli, Z.B. Man, M.B.C. Ismail, and M.I. Khan, The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review, Polym. Rev., vol. 56, no. 3, pp. 429–485, 2016. DOI: 10.1080/15583724.2015.1107098.
  • A.H. Navarchian, N. Najafipoor, and F. Ahangaran, Surface-modified poly(methyl methacrylate) microcapsules containing linseed oil for application in self-healing epoxy-based coatings, Prog. Org. Coat., vol. 132, pp. 288–297, 2019. DOI: 10.1016/j.porgcoat.2019.03.029.
  • D.Y. Zhu, M.Z. Rong, and M.Q. Zhang, Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation, Prog. Polym. Sci., vol. 49–50, pp. 175–220, 2015. DOI: 10.1016/j.progpolymsci.2015.07.002.
  • Y.C. Yuan, M.Z. Rong, M.Q. Zhang, J. Chen, G.C. Yang, and X.M. Li, Self-healing polymeric materials using epoxy/mercaptan as the healant, Macromolecules, vol. 41, no. 14, pp. 5197–5202, 2008. DOI: 10.1021/ma800028d.
  • Q. Li, Siddaramaiah, N.H. Kim, D. Hui, and J.H. Lee, Effects of dual component microcapsules of resin and curing agent on the self-healing efficiency of epoxy, Compos. B. Eng., vol. 55, pp. 79–85, 2013. DOI: 10.1016/j.compositesb.2013.06.006.
  • N.I. Khan, S. Halder, and M.S. Goyat, Influence of dual-component microcapsules on self-healing efficiency and performance of metal-epoxy composite-lap joints, J. Adhes., vol. 93, no. 12, pp. 949–963, 2017. DOI: 10.1080/00218464.2016.1193806.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.