98
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Fatigue crack propagation simulation of vertical centrifugal pump runner using the extended finite element method

, , &
Received 28 Jan 2023, Accepted 11 Apr 2023, Published online: 17 May 2023

References

  • B.O. Samuel, M. Sumaila, and B. Dan-Asabe, Multi-objective optimization and modeling of a natural fiber hybrid reinforced composite (P(x)G(y)E(z)) for wind turbine blade development using grey relational analysis and regression analysis, Mech. Adv. Mater. Struct., pp. 1–19, 2022. DOI: 10.1080/15376494.2022.2118404.
  • A.S. Dehkharqani, F. Engström, J.-O. Aidanpaa, and M.J. Cervantes, Experimental investigation of a 10 MW prototype kaplan turbine during start-up operation, Energies (Basel), vol. 12, no. 23, p. 4582, 2019. DOI: 10.3390/en12234582.
  • Z. Li, W. Zhixun, P. Haiqing, Y. Xiaowei, W. Pu, A. Changsheng, and Y. Zhufeng, Creep life prediction for a nickel-based single crystal turbine blade, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6039–6052, 2022. DOI: 10.1080/15376494.2021.1972187.
  • W. Yang, N. Per, S. Linn, Y. Jiandong, Z. Wei, and L. Urban, Wear reduction for hydropower turbines considering frequency quality of power systems: A study on controller filters, IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1191–1201, 2017. DOI: 10.1109/TPWRS.2016.2590504.
  • A. Presas, Y. Luo, Z. Wang, and B. Guo, Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends, Renewable & Sustainable Energy Reviews., vol. 102, pp. 96–110, 2019. DOI: 10.1016/j.rser.2018.12.001.
  • Q. Dollon, J. Antoni, A. Tahan, M. Gagnon, and C. Monette, Operational modal analysis of hydroelectric turbines using an order based likelihood approach, Renewable Energy, vol. 165, pp. 799–811, 2021. DOI: 10.1016/j.renene.2020.11.086.
  • Q.H. Pham, G. Martin, A. Jérôme, T. Antoine, and M. Christine, Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment, Renewable Energy, vol. 172, pp. 465–476, 2021. DOI: 10.1016/j.renene.2021.03.036.
  • R. Biswal and A. Mehmanparast, Fatigue damage analysis of offshore wind turbine monopile weldments, in 3rd International Conference on Structural Integrity (ICSI 2019), vol. 17, pp. 643–650, 2019. DOI: 10.1016/j.prostr.2019.08.086.
  • R. Hosseini and R. Seifi, Fatigue crack growth determination based on cyclic plastic zone and cyclic J‐integral in kinematic–isotropic hardening materials with considering Chaboche model, Fatigue Fract. Eng. Mater. Struct., vol. 43, no. 11, pp. 2668–2682, 2020. DOI: 10.1111/ffe.13330.
  • H. Xin and M. Veljkovic, Residual stress effects on fatigue crack growth rate of mild steel S355 exposed to air and seawater environments, Mater. Des., vol. 193, p. 108732, 2020. DOI: 10.1016/j.matdes.2020.108732.
  • H. Xin, J.A.F.O. Correia, and M. Veljkovic, Three-dimensional fatigue crack propagation simulation using extended finite element methods for steel grades S355 and S690 considering mean stress effects, Eng. Struct., vol. 227, p. 111414, 2021. DOI: 10.1016/j.engstruct.2020.111414.
  • S. Abharian S. Vahab, R. Haleh, and B. Masoud, Effects of concrete/gypsum bedding layers and their inclination angles on the tensile failure mechanism: Experimental and numerical studies, Case Stud. Constr. Mater., vol. 17, pp. e01272, 2022. DOI: 10.1016/j.cscm.2022.e01272.
  • J. Fu, H. Haeri, V. Sarfarazi, M. Mehri, K. Asgari, and M.F. Marji, Effects of transversely isotropic layers on failure mechanism of non-homogeny concrete-soil specimens, Geomech. Geophys. Geo-Energy Geo-Resour., vol. 8, no. 5, pp. 1–18, 2022. DOI: 10.1007/s40948-022-00473-4.
  • J. Fu, H. Haeri, V. Sarfarazi, and M.F. Marji, Interaction between the notch and mortar–mortar interface (with different inclinations) in semi-circular bend specimens, Iran J. Sci. Technol. Trans. Civ. Eng., vol. 46, no. 4, pp. 2747–2763, 2022. DOI: 10.1007/s40996-021-00774-w.
  • H. Haeri, V. Sarfarazi, and M. Marji, Investigating the tensile strength of concrete-gypsum interface using the ring type bi-material specimens, Arab. J. Geosci., vol. 14, no. 17, pp. 1–18, 2021. DOI: 10.1007/s125-021-08096-x.
  • P.C. Paris, M.P. Gomez, and W.E. Anderson, A rational analytical theory of fatigue, the trend in engineering, vol. 13. University of Washington, Seattle, 1961.
  • J. Schijve, Some formulas for the crack opening stress level, Eng. Fract. Mech., vol. 14, no. 3, pp. 461–465, 1981. DOI: 10.1016/0013-7944(81)90034-5.
  • A. Clerivet and C. Bathias, Study of crack tip opening under cyclic loading taking into account the environment and R ratio, Eng. Fract. Mech., vol. 12, no. 4, pp. 599–611, 1979. DOI: 10.1016/0013-7944(79)90100-0.
  • V. Kaushik and A. Ghosh, Fatigue life estimation and crack propagation analysis of orthotropic lamina using XIGA methodology, Mech. Adv. Mater. Struct., vol. 26, no. 24, pp. 2062–2077, 2019. DOI: 10.1080/15376494.2018.1472324.
  • L. Xu, S. Yue, Y. Hongda, and J. Xiaoyu, Micromechanisms of a macrocrack propagation behavior affected by short to long fatigue microcracks, Mech. Adv. Mater. Struct., vol. 29, no. 19, pp. 2726–2739, 2022.
  • E. Wolf, Fatigue crack closure under cyclic tension, Eng. Fract. Mech., vol. 2, no. 1, pp. 37–45, 1970. DOI: 10.1016/0013-7944(70)90028-7.
  • N.E. Atanasiu, Fatigue crack propagation and threshold of type 304L austenitic stainless steel Mechanical behavior of materials IV, in Proceedings of the 4th International Conference, Stockholm, Sweden, 1983.
  • S. Qi, L.X. Cai, C. Bao, H. Chen, K.K. Shi, and H.L. Wu, Analytical theory for fatigue crack propagation rates of mixed-mode I–II cracks and its application, Int. J. Fatigue, vol. 119, pp. 150–159, 2019. DOI: 10.1016/j.ijfatigue.2018.10.004.
  • S. Qi, L.X. Cai, C. Bao, K.K. Shi, and H.L. Wu, The prediction models for fatigue crack propagation rates of mixed-mode I-II cracks, Eng. Fract. Mech., vol. 205, pp. 218–228, 2019. DOI: 10.1016/j.engfracmech.2018.11.018.
  • G. Lesiuk, M.M. Duda, J. Correia, A.M.P. de Jesus, and R. Calçada, Fatigue crack growth of 42CrMo4 and 41Cr4 steels under different heat treatment conditions, Int. J. Struct. Integr., vol. 9, no. 3, pp. 326–336, 2018
  • Z. Liu, Z. Li, C. Huang, and X. Jiang, An investigation on the fatigue performance of cracked steel plates reinforced with FRP and stop hole, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 3646–3657, 2022. DOI: 10.1080/15376494.2021.1907005.
  • S. Bhowmick and G.R. Liu, A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method, Eng. Fract. Mech., vol. 204, pp. 369–387, 2018. DOI: 10.1016/j.engfracmech.2018.10.026.
  • M. Islam and P. Chong, A Total Lagrangian SPH method for modelling damage and failure in solids, Int. J. Mech. Sci., vol. 157–158, pp. 498–511, 2019. DOI: 10.1016/j.ijmecsci.2019.05.003.
  • A.D. Vaucorbeil and C.R. Hutchinson, A damage and failure implementation for the simulation of ductile solids with Total-Lagrangian Smooth Particle Hydrodynamics, vol. 121, no. 10, pp. 2227–2245, 2020. DOI: 10.1002/nme.6306.
  • A. Bergara, J. I. Dorado, A. Martín-Meizoso, and J. M. Martínez-Esnaola, Fatigue crack propagation at aeronautic engine vane guides using the extended finite element method (XFEM), Mech. Adv. Mater. Struct., vol. 28, no. 8, pp. 861–873, 2021. DOI: 10.1080/15376494.2019.1602236.
  • Z. Valadi, H. Bayesteh, and S. Mohammadi, XFEM fracture analysis of cracked pipeline with and without FRP composite repairs, Mech. Adv. Mater. Struct., vol. 27, no. 22, pp. 1888–1899, 2020. DOI: 10.1080/15376494.2018.1529844.
  • A. Negi and S. Kumar, A continuous–discontinuous localizing gradient damage framework for failure analysis of quasi-brittle materials, Comput. Methods Appl. Mech. Eng., vol. 390, p. 114434, 2022. DOI: 10.1016/j.cma.2021.114434.
  • A. Soni, S. Kumar, and N. Kumar, Effect of parametric uncertainties on fracture behavior of cortical bone using XIGA, Eng. Fract. Mech., vol. 233, p. 107079, 2020. DOI: 10.1016/j.engfracmech.2020.107079.
  • U. Singh, S. Kumar, and B. Chen, Smoothed floating node method for modelling 2D arbitrary crack propagation problems, Theor. Appl. Fract. Mech., vol. 117, p. 103190, 2022. DOI: 10.1016/j.tafmec.2021.103190.
  • A.K. Yavuz, A.D. Senalp, H.S. Türkmen, and S.L. Phoenix, Interacting fatigue crack growth analysis with boundary cracklet method, Adv. Mater. Res., vol. 445, pp. 1017–1022, 2012. DOI: 10.4028/scientific5/AMR.445.1017.
  • A.M. Alshoaibi and Y.A. Fageehi, Numerical analysis of fatigue crack growth path and life predictions for linear elastic material, Materials, vol. 13, no. 15, p. 3380, 2020. DOI: 10.3390/ma13153380.
  • A.L.L. Da Silva, J.A.F.O. Correia, A.M.P. de Jesus, G. Lesiuk, A.A. Fernandes, R. Calçada, and F. Berto, Influence of fillet end geometry on fatigue behaviour of welded joints, Int. J. Fatigue, vol. 123, pp. 196–212, 2019. DOI: 10.1016/j.ijfatigue.2019.02.025.
  • A.L.L. Silva, A.M.P. de Jesus, J. Xavier, J.A.F.O. Correia, and A.A. Fernandes, Combined analytical-numerical methodologies for the evaluation of mixed-mode (I + II) fatigue crack growth rates in structural steels, Eng. Fract. Mech., vol. 185, pp. 124–138, 2017. DOI: 10.1016/j.engfracmech.2017.04.016.
  • S. Filho, H.M. Santana, J.R.P. Vaz, L.D. Rodrigues, and A.L.A. Mesquita, Fatigue life estimation of hydrokinetic turbine blades, J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 6, pp. 1–14, 2020.
  • Y. Huang, Y. Tang, J. VanZwieten, G. Jiang, and T. Ding, Remaining useful life estimation of hydrokinetic turbine blades using power signal, in 2019 IEEE Power & Energy Society General Meeting (PESGM), IEEE, 2019. DOI: 10.1109/PESGM40551.2019.8973840.
  • A. Luna-Ramírez, A. Campos-Amezcua, O. Dorantes-Gómez, Z. Mazur-Czerwiec, and R. Muñoz-Quezada, Failure analysis of runner blades in a Francis hydraulic turbine - Case study, Eng. Fail. Anal., vol. 59, pp. 314–325, 2016. DOI: 10.1016/j.engfailanal.2015.10.020.
  • H. Li, Z. Hu, K. Chandrashekhara, X. Du, and R. Mishra, Reliability-based fatigue life investigation for a medium-scale composite hydrokinetic turbine blade, Ocean Eng., vol. 89, pp. 230–242, 2014. DOI: 10.1016/j.oceaneng.2014.08.006.
  • L. Li, Damage and failure analysis of fiber-reinforced ceramic-matrix composites with different fiber preforms under stochastic fatigue load spectrum, J. Mater. Eng. Perform., vol. 30, no. 11, pp. 8349–8368, 2021. DOI: 10.1007/s11665-021-06013-7.
  • A. Soni, S. Kumar, and N. Kumar, Stochastic failure analysis of proximal femur using an isogeometric analysis based nonlocal gradient-enhanced damage model, Comput. Methods Prog. Biomed., vol. 220, p. 106820, 2022. DOI: 10.1016/j.cmpb.2022.106820.
  • W. Shi, W. Wang, L. Cui, and X. Li, Numerical study of an ice-offshore wind turbine structure interaction with the pile-soil interaction under stochastic wind loads, Ocean Eng., vol. 273, p. 113984, 2023. DOI: 10.1016/j.oceaneng.2023.113984.
  • S. Kalnaus, F. Fan, Y. Jiang, and A.K. Vasudevan, An experimental investigation of fatigue crack growth of stainless steel 304L, Int. J. Fatigue, vol. 31, no. 5, pp. 840–849, 2009. DOI: 10.1016/j.ijfatigue.2008.11.004.
  • H. Tada, P.C. Paris, and G.R. Irwin, The stress analysis of cracks handbook, Mechanical Engineering, 2000.
  • N. Sukumar, D.L. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Eng., vol. 190, no. 46–47, pp. 6183–6200, 2001. DOI: 10.1016/S0045-7825(01)00215-8.
  • J. Shouyan and D. Chengbin, Study on dynamic interaction between crack and inclusion or void by using XFEM, Struct. Eng. Mech., vol. 63, no. 3, pp. 329–345, 2017.
  • Abaqus V. 2019 Documentation, vol. 651, Dassault Syst Simulia Corp. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.