391
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

In-plane dynamic crushing of a novel hybrid auxetic honeycomb with enhanced energy absorption

, , , , &
Pages 4635-4653 | Received 20 Jan 2023, Accepted 13 Apr 2023, Published online: 02 May 2023

References

  • L.J. Gibson, and M.F. Ashby, Cellular Solids: Structures and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997, pp. 268–278. DOI: 10.1017/CBO9781139878326.
  • X. Hou, and V.V. Silberschmidt, Metamaterials with negative Poisson’s ratio: a review of mechanical properties and deformation mechanisms, Mech. Adv. Mater. Struct., pp. 155–179. 2015. DOI: 10.1007/978-3-319-17118-0.
  • R. Lakes, Foam structures with a negative Poisson’s ratio, Science, vol. 235, no. 4792, pp. 1038–1040, 1987. DOI: 10.1126/science.235.4792.1038.
  • J.N. Grima, R. Gatt, A. Alderson, and K.E. Evans, On the potential of connected stars as auxetic systems, Mol. Simul., vol. 31, no. 13, pp. 925–935, 2005. DOI: 10.1080/08927020500401139.
  • L.L. Wei, X. Zhao, Q. Yu, W. Zhang, and G. Zhu, In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation, Aerosp. Sci. Technol., vol. 115, pp. 106797, 2021. DOI: 10.1016/j.ast.2021.106797.
  • S.H. Xiao, C. Zhang, Q. Qin, and H. Wang, A novel planar auxetic phononic crystal with periodic cookie-shaped cellular microstructures, Mech. Adv. Mater, Struct., vol. 29, pp. 3345–3358, 2021. DOI: 10.1080/15376494.2021.1896057.
  • C. Qi, F. Jiang, C. Yu, and S. Yang, In-plane crushing response of tetra-chiral honeycombs, Int. J. Impact Eng., vol. 130, pp. 247–265, 2019. DOI: 10.1016/j.ijimpeng.2019.04.019.
  • Q. Gao, C. Ge, W. Zhuang, L. Wang, and Z. Ma, Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading, Mater. Des., vol. 161, pp. 22–34, 2019. DOI: 10.1016/j.matdes.2018.11.013.
  • I.G. Masters, and K.E. Evans, Models for the elastic deformation of honeycombs, Compos. Struct., vol. 35, no. 4, pp. 403–422, 1996. DOI: 10.1016/S0263-8223(96)00054-2.
  • J.B. Choi, and R.S. Lakes, Non-linear properties of metallic cellular materials with a negative Poisson’s ratio, J Mater Sci., vol. 27, no. 19, pp. 5375–5381, 1992. DOI: 10.1007/BF02403846.
  • D. Mousanezhad, B. Haghpanah, R. Ghosh, A.M. Hamouda, H. Nayeb-Hashemi, and A. Vaziri, Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach, Theor. Appl. Mech. Lett., vol. 6, no. 2, pp. 81–96, 2016. DOI: 10.1016/j.taml.2016.02.004.
  • F. Scarpa, and P.J. Tomlin, On the transverse shear modulus of negative Poisson’s ratio honeycomb structures, Fatigue Fract. Eng. Mater. Struct., vol. 23, no. 8, pp. 717–720, 2000. DOI: 10.1046/j.1460-2695.2000.00278.x.
  • T. Li, F. Liu, and L. Wang, Enhancing indentation and impact resistance in auxetic composite materials, Compos. Part B: Eng., vol. 198, pp. 108229, 2020. DOI: 10.1016/j.compositesb.2020.108229.
  • Y. Prawoto, Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio, Comput. Mater. Sci., vol. 58, pp. 140–153, 2012. DOI: 10.1016/j.commatsci.2012.02.012.
  • L.L. Hu, M.Z. Zhou, and H. Deng, Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation, Compos. Struct., vol. 207, pp. 323–330, 2019. DOI: 10.1016/j.compstruct.2018.09.066.
  • F. Scarpa, L.G. Ciffo, and J.R. Yates, Dynamic properties of high structural integrity auxetic open cell foam, Smart Mater. Struct., vol. 13, no. 1, pp. 49–56, 2004. DOI: 10.1088/0964-1726/13/1/006.
  • M.B. Francisco, J.L.J. Pereira, G.A. Oliver, L.R. Roque da Silva, S.S. Cunha, Jr, and G.F. Gomes, A review on the energy absorption response and structural applications of auxetic structures, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 5823–5842, 2022. DOI: 10.1080/15376494.2021.1966143.
  • M. Sanami, N. Ravirala, K. Alderson, and A. Alderson, Auxetic materials for sports applications, Procedia Eng., vol. 72, pp. 453–458, 2014. DOI: 10.1016/j.proeng.2014.06.079.
  • J. Simpson, and Z. Kazancı, Crushing investigation of crash boxes filled with honeycomb and re-entrant (auxetic) lattices, Thin-Walled Struct., vol. 150, pp. 106676, 2020. DOI: 10.1016/j.tws.2020.106676.
  • G. Caserta, U. Galvanetto, and L. Iannucci, Static and dynamic energy absorption of aluminum honeycombs and polymeric foams composites, Mech. Adv. Mater. Struct., vol. 17, no. 5, pp. 366–376, 2010. DOI: 10.1080/15376494.2010.488612.
  • P.R. Oliveira, M. May, T.H. Panzera, and S. Hiermaier, Bio-based/green sandwich structures: A review, Thin-Walled Struct., vol. 177, pp. 109426, 2022. DOI: 10.1016/j.tws.2022.109426.
  • X. Yang, J. Ma, Y. Shi, Y. Sun, and J. Yang, Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load, Mater. Design., vol. 135, pp. 275–290, 2017. DOI: 10.1016/j.matdes.2017.09.040.
  • C. Qi, A. Remennikov, L.Z. Pei, S. Yang, Z.H. Yu, and T.D. Ngo, Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations, Compos. Struct., vol. 180, pp. 161–178, 2017. DOI: 10.1016/j.compstruct.2017.08.020.
  • F. Jiang, S. Yang, C. Qi, H.T. Liu, A. Remennikov, and L.Z. Pei, Blast response and multi-objective optimization of graded re-entrant circular auxetic cored sandwich panels, Compos. Struct., vol. 305, pp. 116494, 2023. DOI: 10.1016/j.compstruct.2022.116494.
  • Q. Gao, W.H. Liao, and C. Huang, Theoretical predictions of dynamic responses of cylindrical sandwich filled with auxetic structures under impact loading, Aerosp. Sci. Technol., vol. 107, pp. 106270, 2020. DOI: 10.1016/j.ast.2020.106270.
  • Q. Gao, and W.H. Liao, Energy absorption of thin walled tube filled with gradient auxetic structures-theory and simulation, Int. J. Mech. Sci., vol. 201, pp. 106475, 2021. DOI: 10.1016/j.ijmecsci.2021.106475.
  • Y. Wang, W. Zhao, G. Zhou, and C. Wang, Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading, Int. J. Mech. Sci., vol. 142–143, pp. 245–254, 2018. DOI: 10.1016/j.ijmecsci.2018.05.001.
  • H.L. Tan, Z.C. He, E. Li, X.W. Tan, A.G. Cheng, and Q.Q. Li, Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores, Aerosp. Sci. Technol., vol. 106, pp. 106073, 2020. DOI: 10.1016/j.ast.2020.106073.
  • L.L. Hu, and T.X. Yu, Dynamic crushing strength of hexagonal honeycombs, Int. J. Impact Eng., vol. 37, no. 5, pp. 467–474, 2010. DOI: 10.1016/j.ijimpeng.2009.12.001.
  • L.L. Hu, and T.X. Yu, Mechanical behavior of hexagonal honeycombs under low-velocity impact - theory and simulations, Int. J. Solids Struct., vol. 50, no. 20-21, pp. 3152–3165, 2013. DOI: 10.1016/j.ijsolstr.2013.05.017.
  • W. Liu, H. Li, J. Zhang, X. Gong, Y. Wang, and X. Ge, Tensile and shear properties of star-shaped cellular lattice structure, Mech. Adv. Mater, Struct., vol. 27, pp. 1–13, 2021. DOI: 10.1080/15376494.2020.1747669.
  • L.L. Hu, M.Z. Zhou, and H. Deng, Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation, Thin-Walled Struct., vol. 131, pp. 373–384, 2018. DOI: 10.1016/j.tws.2018.04.020.
  • L.L. Wei, X. Zhao, Q. Yu, and G. Zhu, A novel star auxetic honeycomb with enhanced in-plane crushing strength, Thin-Walled Struct., vol. 149, pp. 106623, 2020. DOI: 10.1016/j.tws.2020.106623.
  • H. Lu, X. Wang, and T. Chen, In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson’s ratio and enhanced energy absorption, Thin-Walled Struct., vol. 160, pp. 107366, 2021. DOI: 10.1016/j.tws.2020.107366.
  • H. Wang, Z.X. Lu, Z.Y. Yang, and X. Li, In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions, Int. J. Mech. Sci., vol. 151, pp. 746–759, 2019. DOI: 10.1016/j.ijmecsci.2018.12.009.
  • F. Jiang, S. Yang, C. Ding, and C. Qi, Quasi-static crushing behavior of novel circular double arrowed auxetic honeycombs: Experimental test and numerical simulation, Thin-Walled Struct., vol. 177, pp. 109434, 2022. DOI: 10.1016/j.tws.2022.109434.
  • C. Qi, F. Jiang, A. Remennikov, L.-Z. Pei, J. Liu, J.-S. Wang, X.-W. Liao, and S. Yang, Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Compos. Part B: Eng., vol. 197, pp. 108117, 2020. DOI: 10.1016/j.compositesb.2020.108117.
  • X. Yang, X. Xi, Q. Pan, and H. Liu, In-plane dynamic crushing of a novel circular-celled honeycomb nested with petal-shaped mesostructure, Compos. Struct., vol. 226, pp. 111219, 2019. DOI: 10.1016/j.compstruct.2019.111219.
  • M.C. Xu, Z.R. Xu, Z. Zhang, H. Lei, Y. Bai, and D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: theoretical and experimental studies, Int. J. Mech. Sci., vol. 159, pp. 43–57, 2019. DOI: 10.1016/j.ijmecsci.2019.05.044.
  • C. Qi, F. Jiang, and S. Yang, Advanced honeycomb designs for improving mechanical properties: A review, Compos. Part B., vol. 227, pp. 109393, 2021. DOI: 10.1016/j.compositesb.2021.109393.
  • N.S. Ha, and G.X. Lu, A review of recent research on bio-inspired structures and materials for energy absorption applications, Compos. Part B., vol. 181, pp. 107496, 2020. DOI: 10.1016/j.compositesb.2019.107496.
  • W. Zhang, J. Xu, and T.X. Yu, Dynamic behaviors of bio-inspired structures: design, mechanisms, and models, Eng. Struct., vol. 265, pp. 114490, 2022. DOI: 10.1016/j.engstruct.2022.114490.
  • W. Zhang, T.X. Yu, and J. Xu, Uncover the underlying mechanisms of topology and structural hierarchy in energy absorption performances of bamboo-inspired tubular honeycomb, Extreme Mech. Lett., vol. 52, pp. 101640, 2022. DOI: 10.1016/j.eml.2022.101640.
  • H. Jiang, Y. Ren, Q. Jin, G. Zhu, Y. Hu, and F. Cheng, Crashworthiness of novel concentric auxetic reentrant honeycomb with negative Poisson’s ratio biologically inspired by coconut palm, Thin-Walled Struct., vol. 154, pp. 106911, 2020. DOI: 10.1016/j.tws.2020.106911.
  • W. Ma, S. Xie, Z. Li, Z. Feng, and K. Jing, Crushing behaviors of horse-hoof-wall inspired corrugated tubes under multiple loading conditions, Mech. Adv. Mater, Struct., vol. 29, no. 22, pp. 3263–3280, 2022. DOI: 10.1080/15376494.2021.1892245.
  • H. Yang, and L. Ma, Impact resistance of additively manufactured 3D double-U auxetic structures, Thin-Walled Struct., vol. 169, pp. 108373, 2021. DOI: 10.1016/j.tws.2021.108373.
  • Y. Su, X. Wu, and J. Shi, A novel 3D printable multimaterial auxetic metamaterial with reinforced structure: Improved stiffness and retained auxetic behavior, Mech. Adv. Mater, Struct., vol. 29, no. 3, pp. 408–418, 2022. DOI: 10.1080/15376494.2020.1774690.
  • R. Doodi, and B.M. Gunji, An experimental and numerical investigation on the performance of novel hybrid bio-inspired 3D printed lattice structures for stiffness and energy absorption applications, Mech. Adv. Mater, Struct., pp. 1–10, 2023. DOI: 10.1080/15376494.2023.2188324.
  • H.X. Wu, X.C. Zhang, and Y. Liu, In-plane crushing behavior of density graded cross circular honeycombs with zero Poisson’s ratio, Thin-Walled Struct., vol. 151, pp. 106767, 2020. DOI: 10.1016/j.tws.2020.106767.
  • S.R. Reid, and C. Peng, Dynamic uniaxial crushing of wood, Int. J. Impact Eng., vol. 19, no. 5-6, pp. 531–570, 1997. DOI: 10.1016/S0734-743X(97)00016-X.
  • P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li, Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations, J. Mech. Phys. Solids, vol. 53, no. 10, pp. 2174–2205, 2005. DOI: 10.1016/j.jmps.2005.05.007.
  • X.C. Zhang, L.Q. An, and H.M. Ding, Dynamic crushing behavior and energy absorption of honeycombs with density gradient, J. Sandw. Struct. Mater., vol. 16, no. 2, pp. 125–147, 2014. DOI: 10.1177/1099636213509099.
  • T.X. Yu, Y.F. Xiang, M. Wang, and L.M. Yang, Key performance indicators of tubes used as energy absorbers, KEM., vol. 626, pp. 155–161, 2014. DOI: 10.4028/www.scientific.net/KEM.626.155.
  • H.L. Tan, Z.C. He, K.X. Li, E. Li, A.G. Cheng, and B. Xu, In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio, Compos. Struct., vol. 229, pp. 111415, 2019. DOI: 10.1016/j.compstruct.2019.111415.
  • A. Hönig, and W.J. Stronge, In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping, Int. J. Mech. Sci., vol. 44, no. 8, pp. 1665–1696, 2002. DOI: 10.1016/S0020-7403(02)00060-7.
  • D. Ruan, G. Lu, B. Wang, and T.X. Yu, In-plane dynamic crushing of honeycombs - A finite element study, Int. J. Impact Eng., vol. 28, no. 2, pp. 161–182, 2003. DOI: 10.1016/S0734-743X(02)00056-8.
  • D. Zhang, Q. Fei, and P. Zhang, In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells, Thin-Walled Struct., vol. 117, pp. 199–210, 2017. DOI: 10.1016/j.tws.2017.03.028.
  • W. Liu, N. Wang, T. Luo, and Z. Lin, In-plane dynamic crushing of re-entrant auxetic cellular structure, Mater. Des., vol. 100, pp. 84–91, 2016. DOI: 10.1016/j.matdes.2016.03.086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.