92
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Thermal fatigue failure enhancement for FGM coolant pipes subject to high-temperature and hydrostatic lateral pressure

&
Received 14 Oct 2022, Accepted 16 Apr 2023, Published online: 04 May 2023

References

  • K.S. Kang, and L. Kupca, Assessment and Management of Aging of Major Nuclear Power Plant Components Important to Safety, International Atomic Energy Agency (IAEA), Vienna International Centre, Vienna, Austria, 2011.
  • C. Faidy, S. Chapuliot, and E. Mathet, Thermal fatigue of reactor components in OECD-NEA member countries: a three-fold program to enhance cooperation, International Conference on Structural Mechanics in Reactor Technology, China, 2005.
  • E. Paffumi, K.F. Nilsson, and N.G. Taylor, Simulation of thermal fatigue damage in a 316L model pipe component, Int. J. Press. Vessels Pip., vol. 85, no. 11, pp. 798–813, 2008. DOI: 10.1016/j.ijpvp.2008.06.002.
  • R.G. Ballinger, The development and production of a functionally graded composite for Pb-Bi service, U.S. Department of Energy Office of Scientific and Technical Information (Technical Report DOE-ID1 4742), 2011.
  • R.G. Ballinger, Materials testing and development of functionally graded composite fuel cladding and piping for the lead-bismuth cooled nuclear reactor, Master’s thesis, Massachusetts Institute of Technology, Massachusetts, 2013.
  • Magdalena Serrano De Caro, Keith A. Woloshun, Floren V. Rubio, and Stuart A. Maloy, Materials Selection for the Lead-Bismuth Corrosion and Erosion Tests in Delta Loop, U.S. Department of Energy Office of Scientific and Technical Information, United States, 2013.
  • L. Jeongyoun, Effects of Chromium and silicon on corrosion of iron alloys in lead-bismuth eutectic, Ph.D. thesis, Massachusetts Institute of Technology, Massachusetts, 2006.
  • Wenxuan Xi, Yongwei Wang, Xunfeng Li, Xiulan Huai, and Jun Cai, Experimental investigation of the thermal hydraulics in lead bismuth eutectic-helium experimental loop of an accelerator-driven system, Nucl. Eng. Technol., vol. 48, no. 5, pp. 1154–1161, 2016. DOI: 10.1016/j.net.2016.04.008.
  • W. Hao, X. Jun, and W. Hui, Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review, Coatings., vol. 11, no. 3, p. 364. 2021. DOI: 10.3390/coatings11030364.
  • A. Kwangwon, J. Kyohun, and P.P. Sung, Safety evaluation of silicon carbide and zircaloy-4 cladding during a large-break loss-of coolant accident, Energies, vol. 11, no. 12, p. 3324, 2018. DOI: 10.3390/en11123324.
  • W.L. Ting, Risk-informed safety margin characterization for a larger break loss-of-coolant accident of nuclear power plants and associated peak cladding temperature margin evolution, Master Thesis, University of Liverpool, Liverpool, 2019.
  • S. Masahide, M. Kenta, and S. Takashi, Verification of safety margin of reactor pressure vessel exposed to various thermal transients based on probabilistic approach, E-J. Adv. Maint., vol. 11, no. 4, pp. 172–178, 2020.
  • V.R. Vincenzo, and W. Thierry, The high burn-up structure in nuclear fuel, Mater. Today, vol. 13, no. 12, pp. 24–32, 2010.
  • M.P. Short, R.G. Ballinger, and H.E. Hanninen, Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715 °C, J. Nucl. Mater., vol. 434, no. 1–3, pp. 259–281, 2013. DOI: 10.1016/j.jnucmat.2012.11.010.
  • Z. Huihua, L. Simin, and H. Shangyu, The numerical manifold method for transient moisture diffusion in 2D functionally graded materials, IOP Conf. Ser.: Earth Environ. Sci., vol. 189, no. 3, p. 032017, 2018. DOI: 10.1088/1755-1315/189/3/032017.
  • H. Zhang, S. Liu, and S. Han, Modelling steady moisture diffusion in functionally graded materials with the numerical manifold method, IOP Conf. Ser.: Earth Environ. Sci., vol. 189, no. 4, p. 042018, 2018. DOI: 10.1088/1755-1315/189/4/.
  • K. Koutoati, F. Mohri, and E.M. Daya, Finite element approach of axial bending coupling on static and vibration behaviors of functionally graded material sandwich beams, Mech. Adv. Mater. Struct., vol. 28, no. 15, pp. 1537–1553, 2021. DOI: 10.1080/15376494.2019.1685144.
  • J.R. Cho, and D.Y. Ha, Averaging and finite element discretization approaches in the numerical analysis of functionally graded materials, Mater. Sci. Eng.: A, vol. 302, no. 2, pp. 187–196, 2001. DOI: 10.1016/S0921-5093(00)01835-9.
  • H.L. Dai, and H.J. Jiang, Magnetothermoelastic bending analysis of a functionally graded material cylindrical shell, Mech. Adv. Mater. Struct., vol. 22, no. 4, pp. 281–289, 2015. DOI: 10.1080/15376494.2012.736057.
  • K.C. Lo, and H.Y. Lai, Corrosion enhancement for FGM coolant pipes subjected to high-temperature and hydrostatic pressure, Coatings, vol. 12, no. 5, p. 666, 2022. DOI: 10.3390/coatings12050666.
  • M.D. Demirbaş, R. Ekici, and M.K. Apalak, Thermoelastic analysis of temperature-dependent functionally graded rectangular plates using finite element and finite difference methods, Mech. Adv. Mater. Struct., vol. 27, no. 9, pp. 707–724, 2020. DOI: 10.1080/15376494.2018.1494871.
  • K.P. Verma, and D.K. Maiti, Geometric nonlinear transient analysis of mechanically and thermally shocked functionally graded shell panels, Mech. Adv. Mater. Struct., pp. 1–21, 2022. DOI: 10.1080/15376494.2022.2119314.
  • B. Zhou, The effect of the pre-existing surface crack morphologies on the thermal fracture of ceramic coatings, Ph.D. thesis, Purdue University, Indiana, 2003.
  • M.P. Short, S. McAlpine, M. Tonks, A. Rezwan, J. Zhang, A. Leong, Y. Xie, J. Rausch, J. Salkin, M. Bachav, U. Ehrnstén, S. Penttilä, S. Peltonen, P. Nevasmaa, R. Pohja, H. Hänninen, T. Sarikka, and R. Qiang, NEUP Final Report: Multilayer Composite Fuel Cladding and Core Internals for LWR Performance Enhancement and Severe Accident Tolerance, Massachusetts Institute of Technology, Cambridge, MA, 2019. DOI: 10.2172/1572872.
  • S. Raju, T. Haraprasanna, and K.R. Arun, Thermal expansion characteristics of Fe-9Cr-0.12C-0.56Mn-0.24V-1.38W-0.06Ta (wt.%) reduced activation ferritic-martensitic steel, J. Nucl. Mater., vol. 459, pp. 150–158, 2015.
  • T. Wan, T. Naoe, H. Kogawa, M. Futakawa, H. Obayashi, and T. Sasa, Numerical study on the potential of cavitation damage in a lead-bismuth eutectic spallation target, Materials, vol. 12, no. 4, pp. 681, 2019.
  • P. Hosemann, S. Kabra, E. Stergar, M.J. Cappillo, and S.A. Maloy, Micro-structural characterization of laboratory heats of the Ferric/Martensitic steels HT-9 and T91, J. Nucl. Mater., vol. 403, no. 1–3, pp. 7–14, 2010.
  • J. Wang, Study of microstructure evolution in F/M steel T91 by in-situ synchrotron wide-angle X-rays scattering, Master Thesis, University of Illinois, Illinois, 2017.
  • G. Tibba, Modeling the inelastic behavior of heat exchangers accounting for fluid-structure interactions, Ph.D. thesis, Otto von Guericke University, German, 2013.
  • J. Zhang, C. Su, and Y. Liu, First-principles study of bcc Fe-Cr-Si binary and ternary random alloys from special quasi-random structure, Physica B, vol. 586, p. 412085, 2020. DOI: 10.1016/j.physb.2020.
  • S.O. Yilmaz, Wear behavior of gas tungsten arc deposited FeCrC, FeCrSi, and WCo coatings on AISI 1018 steel, Surf. Coat. Technol., vol. 194, no. 2–3, pp. 175–183, 2005.
  • Y.C. Zhou, and T. Hashida, Thermal fatigue failure induced by delamination in thermal barrier coating, Int. J. Fatigue, vol. 24, no. 2–4, pp. 407–417, 2002. DOI: 10.1016/S0142-1123(01)00096-2.
  • M. Joonho, K. Sungyu, and D.P. Won, Initial oxidation behavior of Fe-Cr-Si alloys in 1200 °C steam, J. Nucl. Mater., vol. 513, pp. 297–308, 2019.
  • Bingsheng Li, Qing Liao, Hongpeng Zhang, Tielong Shen, Fangfang Ge, and Nabil Daghbouj, The effects of stress on corrosion behavior of SIMP martensitic steel in static liquid lead-bismuth eutectic, Corros. Sci., vol. 187, p. 109477, 2021. DOI: 10.1016/j.corsci.2021.
  • W. Tao, and S. Shigeru, Flow-accelerated corrosion of type 316L stainless steel caused by turbulent lead-bismuth eutectic flow, Metals, vol. 8, no. 8, p. 627, 2018. DOI: 10.3390/met8080627.
  • J. Postlethwaite, and S. Nesic, Hydrodynamics of disturbed flow and erosion-corrosion. Part I—Single-phase flow study, Can. J. Chem. Eng., vol. 69, no. 3, pp. 698–703, 1991. DOI: 10.1002/cjce.5450690311.
  • I. Tamura, Y. Tomota, and H. Ozawa, Strength and ductility of Fe–Ni–C alloys composed of austenite and martensite with various strength, Cambridge Inst. Met., vol. 1, no. 1973, pp. 611–615, 1973.
  • Y.J. Woo, and C.H. Sung, Analysis of functionally graded material plates using sigmoidal law, Math. Prob. Eng., vol. 4, no. 8, pp. 1–12, 2017.
  • B. Vasavi, G. Raghavendra, and O. Shakuntla, State of the art in functionally graded materials, Compos. Struct., vol. 262, p. 113596, 2021.
  • S. Faruqui, A. Arabi, and M. Parvel, Thermal resistance approach to analyze temperature distribution in hollow cylinders made of functionally graded material (FGM): under Dirichlet boundary condition. Third International Conference on Mechanical Industrial and Materials Engineering, Rajshahi University of Engineering & Technology, Bengal, 2017.
  • M.A. Samel, Kinetics of Materials, John Wiley & Sons, Hoboken, NJ, 2005.
  • D. Wenyi, J. Zhizhong, and X. Jingping, Interactions between alloy elements and oxygen at the steel-liquid LBE interface determined from first-principles molecular dynamics simulations, Phys. Chem. Chem. Phys., vol. 21, pp. 25521–25926, 2019. DOI: 10.1039/c9cp05626b.
  • Klod Kokini, Jeffery DeJonge, Sudarshan Rangaraj, and Brad Beardsley, Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance, Surf. Coat. Technol., vol. 154, no. 2–3, pp. 223–231, 2002. DOI: 10.1016/S0257-8972(02)00031-2.
  • Ji Li, Xikou He, Bin Xu, Zhengxin Tang, Caishun Fang, and Gang Yang, Effect of silicon on dynamic/static corrosion resistance of T91 in lead–bismuth eutectic at 550 °C, Materials, vol. 15, no. 8, p. 2862, 2022. DOI: 10.3390/ma15082862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.