177
Views
1
CrossRef citations to date
0
Altmetric
Original Article

On the crashworthiness performance of thin-walled circular tubes: Effect of diameter and thickness

ORCID Icon, ORCID Icon & ORCID Icon
Received 11 Feb 2023, Accepted 21 Apr 2023, Published online: 11 May 2023

References

  • Z. Li, W. Ma, S. Yao, and P. Xu, Crashworthiness performance of corrugation-reinforced multicell tubular structures, Int. J. Mech. Sci., vol. 190, pp. 106038, 2021. DOI: 10.1016/j.ijmecsci.2020.106038.
  • L. Zhang, Y. Zhong, W. Tan, C. Gong, Y. Hu, and Z. Bai, Crushing characteristics of bionic thin-walled tubes inspired by bamboo and beetle forewing, Mech. Adv. Mater. Struct., vol. 29, no. 14, pp. 2024–2039, 2022. DOI: 10.1080/15376494.2020.1849880.
  • C. Gong, Y. Hu, and Z. Bai, Crashworthiness analysis and optimization of lotus-inspired bionic multi-cell circular tubes, Mech. Adv. Mater. Struct., pp. 1–19, 2022. DOI: 10.1080/15376494.2022.2111622.
  • N. Abdullah, M. Sani, M. Salwani, and N. Husain, A review on crashworthiness studies of crash box structure, Thin. Walled Struct., vol. 153, pp. 106795, 2020. DOI: 10.1016/j.tws.2020.106795.
  • Z. Li, W. Ma, H. Zhu, G. Deng, L. Hou, P. Xu, and S. Yao, Energy absorption prediction and optimization of corrugation-reinforced multicell square tubes based on machine learning, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5511–5529, 2022. DOI: 10.1080/15376494.2021.1958032.
  • K. Yang, S. Xu, S. Zhou, and Y.M. Xie, Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption, Thin. Walled Struct., vol. 123, pp. 100–113, 2018. /02/01/2018, DOI: 10.1016/j.tws.2017.11.005.
  • Q. Wang, S. Li, Z. Liu, G. Wu, J. Lei, and Z. Wang, Geometric design and energy absorption of a new deployable cylinder tube, Mech. Adv. Mater. Struct., vol. 29, no. 13, pp. 1911–1924, 2022. DOI: 10.1080/15376494.2020.1846099.
  • W. Abramowicz, and N. Jones, Dynamic progressive buckling of circular and square tubes, Int. J. Impact Engin., vol. 4, no. 4, pp. 243–270, 1986. DOI: 10.1016/0734-743X(86)90017-5.
  • B. Chen, M. Zou, G. Liu, J. Song, and H. Wang, Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing, Int. J. Impact Eng., vol. 115, pp. 48–57, 2018. DOI: 10.1016/j.ijimpeng.2018.01.005.
  • D. Chen, Crush Mechanics of Thin-Walled Tubes. CRC Press: New York, NY, USA; Taylor & Francis Group: New York, USA, 2016.
  • R.-Y. Yao, W.-Q. Hao, G.-S. Yin, and B. Zhang, Analytical model of circular tube with wide external circumferential grooves under axial crushing, Int. J. Crashworthiness., vol. 25, no. 5, pp. 527–535, 2020. DOI: 10.1080/13588265.2019.1617096.
  • S. Pirmohammad, and S. Esmaeili Marzdashti, Crashworthiness optimization of combined straight-tapered tubes using genetic algorithm and neural networks, Thin. Walled Struct., vol. 127, pp. 318–332, 2018. DOI: 10.1016/j.tws.2018.01.022.
  • M. Yang, B. Han, P. Su, F. Li, Z. Zhao, Q. Zhang, Q. Zhang, Z. Hong, T. Lu,, Oblique crushing of truncated conical sandwich shell with corrugated core, Mech. Adv. Mater. Struct., vol. 28, no. 23, pp. 2458–2471, 2021. DOI: 10.1080/15376494.2020.1743396.
  • J. Wang, Y. Zhang, N. He, and C.H. Wang, Crashworthiness behavior of Koch fractal structures, Mater. Design., vol. 144, pp. 229–244, 2018. DOI: 10.1016/j.matdes.2018.02.035.
  • L. Zhang, Z. Bai, and F. Bai, Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections, Thin. Walled Struct., vol. 122, pp. 42–51, 2018. /01/01/2018, DOI: 10.1016/j.tws.2017.10.010.
  • W. Ma, S. Xie, and Z. Li, Mechanical performance of bio-inspired corrugated tubes with varying vertex configurations, Int. J. Mech. Sci., vol. 172, pp. 105399, 2020. DOI: 10.1016/j.ijmecsci.2019.105399.
  • D. Chen, and K. Ushijima, Estimation of the initial peak load for circular tubes subjected to axial impact, Thin. Walled Struct., vol. 49, no. 7, pp. 889–898, 2011. DOI: 10.1016/j.tws.2011.02.013.
  • V.J. Shahi, and J. Marzbanrad, Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes, Thin. Walled Struct., vol. 60, pp. 24–37, 2012. DOI: 10.1016/j.tws.2012.05.015.
  • S.H. Ahn, H.S. Jung, J.S. Kim, and S.W. Son, Crashworthiness analysis and shape design optimization of corrugated tubes for railway application, Int. J. Crashworthiness., pp. 1–12, 2022. DOI: 10.1080/13588265.2022.2083748.
  • X. Zhang, and H. Zhang, Axial crushing of circular multi-cell columns, Int. J. Impact Eng., vol. 65, pp. 110–125, 2014. DOI: 10.1016/j.ijimpeng.2013.12.002.
  • S. Tabacu, Analysis of circular tubes with rectangular multi-cell insert under oblique impact loads, Thin. Walled Struct., vol. 106, pp. 129–147, 2016. DOI: 10.1016/j.tws.2016.04.024.
  • D.-H. Chen, T. Masuzawa, and S. Ozaki, Axial compression of axial- and ring-stiffened circular tubes, J. Soc. Mat. Sci., Japan., vol. 57, no. 7, pp. 696–703, 2008. DOI: 10.2472/jsms.57.696.
  • R.-Y. Yao, B. Zhang, G.-S. Yin, and Z.-Y. Zhao, Energy absorption behaviors of foam-filled holed tube subjected to axial crushing: experimental and theoretical investigations, Mech. Adv. Mater. Struct., vol. 28, no. 24, pp. 2501–2514, 2021. DOI: 10.1080/15376494.2020.1745968.
  • P. Baisane, and N. Sakle, Evaluation of crashworthiness parameters for foam-filled concentric tubes using explicit dynamics simulation, Mater. Today: Proc., vol. 72, pp. 1224–1230, 2023. DOI: 10.1016/j.matpr.2022.09.287.
  • Y. Zhang, X. Xu, J. Wang, T. Chen, and C.H. Wang, Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load, Int. J. Mech. Sci., vol. 140, pp. 407–431, 2018. DOI: 10.1016/j.ijmecsci.2018.03.015.
  • Q. Estrada, D. Szwedowicz, A. Rodriguez-Mendez, M. Elías-Espinosa, J. Silva-Aceves, J. Bedolla-Hernández, and O.A. Gómez-Vargas, Effect of radial clearance and holes as crush initiators on the crashworthiness performance of bi-tubular profiles, Thin. Walled Struct., vol. 140, pp. 43–59, 2019. DOI: 10.1016/j.tws.2019.02.039.
  • A.A. Nia, and J.H. Hamedani, Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin. Walled Struct., vol. 48, no. 12, pp. 946–954, 2010. DOI: 10.1016/j.tws.2010.07.003.
  • R. Muralikannan, and R. Velmurugan, Energy absorption characteristics of annealed steel tubes of various cross sections in static and dynamic loading, Latin Am. J. Solids Struct., vol. 6, no. 4, pp. 385–412, 2009.
  • V. Santhosh Kumar, and G. Manikandaraja, Numerical study on energy absorbing characteristics of thin-walled tube under axial and oblique impact, Alexandria Engin. J., vol. 55, no. 1, pp. 187–192, 2016. DOI: 10.1016/j.aej.2015.12.008.
  • M.A. Guler, M.E. Cerit, B. Bayram, B. Gerceker, and E. Karakaya, The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading, Int. J. Crashworthiness., vol. 15, no. 4, pp. 377–390, 2010. DOI: 10.1080/13588260903488750.
  • M.D. Goel, Deformation, energy absorption and crushing behavior of single-, double-and multi-wall foam filled square and circular tubes, Thin. Walled Struct., vol. 90, pp. 1–11, 2015. DOI: 10.1016/j.tws.2015.01.004.
  • A. Eyvazian, H. Taghipoor, and T. Tran, Analytical and experimental investigations on axial crushing of aluminum tube with vertically corrugated, Int. J. Crashworthiness, vol. 27, no. 4, pp. 1032–1045, 2022. DOI: 10.1080/13588265.2021.1892954.
  • J. Marzbanrad, A. Abdollahpoor, and B. Mashadi, Effects of the triggering of circular aluminum tubes on crashworthiness, Int. J. Crashworthiness., vol. 14, no. 6, pp. 591–599, 2009. DOI: 10.1080/13588260902896458.
  • A. Baroutaji, M. Sajjia, and A.-G. Olabi, On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments, Thin. Walled Struct., vol. 118, pp. 137–163, 2017. DOI: 10.1016/j.tws.2017.05.018.
  • J.M. Alexander, An approximate analysis of the collapse of thin cylindrical shells under axial loading, Q J Mech. Appl. Math., vol. 13, no. 1, pp. 10–15, 1960. DOI: 10.1093/qjmam/13.1.10.
  • A. Pugsley, The large-scale crumpling of thin cylindrical columns, Q J Mech. Appl. Math., vol. 13, no. 1, pp. 1–9, 1960. DOI: 10.1093/qjmam/13.1.1.
  • T. Wierzbicki, S.U. Bhat, W. Abramowicz, and D. Brodkin, Alexander revisited—a two folding elements model of progressive crushing of tubes, Int. J. Solids Struct., vol. 29, no. 24, pp. 3269–3288, 1992. DOI: 10.1016/0020-7683(92)90040-Z.
  • W. Abramowicz, and N. Jones, Dynamic axial crushing of circular tubes, International J. Impact Engin., vol. 2, no. 3, pp. 263–281, 1984. DOI: 10.1016/0734-743X(84)90010-1.
  • S. LU, Impact energy absorption analysis of different thin-walled tubes with and without reinforcement, United Kingdom: The University of Manchester, 2014.
  • S. Bhutada, and M. Goel, Crashworthiness parameters and their improvement using tubes as an energy absorbing structure: an overview, Int. J. Crashworthiness., vol. 27, no. 6, pp. 1569–1600, 2022. DOI: 10.1080/13588265.2021.1969845.
  • S.R. Guillow, G. Lu, and R.H. Grzebieta, Quasi-static axial compression of thin-walled circular aluminium tubes, Int. J. Mech. Sci., vol. 43, no. 9, pp. 2103–2123, 2001. DOI: 10.1016/S0020-7403(01)00031-5.
  • N.K. Gupta, Venkatesh, A study of the influence of diameter and wall thickness of cylindrical tubes on their axial collapse, Thin. Walled Struct., vol. 44, no. 3, pp. 290–300, 2006. DOI: 10.1016/j.tws.2006.03.005.
  • M. Emadi, H. Beheshti, and M. Heidari-Rarani, Thickness effect study on the crushing characteristics of aluminum and composite tubes: numerical analysis and multi-objective optimization, Mech. Adv. Mater. Struct., vol. 28, no. 24, pp. 2585–2594, 2021. DOI: 10.1080/15376494.2020.1747667.
  • M.Y. Abbood, and R.N. Kiter, On the peak quasi-static load of axisymmetric buckling of circular tubes, Int. J. Crashworthiness., vol. 27, no. 2, pp. 367–375, 2022. DOI: 10.1080/13588265.2020.1807679.
  • S.W. Han, Y.Y. Woo, T. Lee, J. Kim, J.H. Jeong, and Y.H. Moon, Manufacturing of a corrugated double-layered tube for the high-performance compact heat exchanger, Int. J. Adv. Manuf. Technol., vol. 112, no. 7–8, pp. 2065–2080, 2021. DOI: 10.1007/s00170-020-06419-y.
  • A. Bigdeli, and M. Damghani Nouri, Experimental and numerical analysis and multi-objective optimization of quasi-static compressive test on thin-walled cylindrical with internal networking, Mech. Adv. Mater. Struct., vol. 26, no. 19, pp. 1644–1660, 2019. DOI: 10.1080/15376494.2018.1444231.
  • F. Xu, K. Yu, L. Hua, and X. Niu, Crashworthiness design of crash box filled with negative Poisson’s ratio based on horn structure, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6403–6420, 2022. DOI: 10.1080/15376494.2021.1978594.
  • X. Deng, S. Qin, and J. Huang, Multiobjective optimization of axially varying thickness lateral corrugated tubes for energy absorption, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4259–4272, 2022. DOI: 10.1080/15376494.2021.1924901.
  • M. Davoudi, and C. Kim, Topology optimization for crashworthiness of thin-walled structures under axial crash considering nonlinear plastic buckling and locations of plastic hinges, Eng. Optim., vol. 51, no. 5, pp. 775–795, 2019. DOI: 10.1080/0305215X.2018.1495717.
  • E.İ. Albak, Multi-objective crashworthiness optimization of thin-walled multi-cell tubes with different wall lengths, Int. J. Crashworthiness., vol. 26, no. 4, pp. 438–455, 2021. DOI: 10.1080/13588265.2020.1724015.
  • Simulia, Abaqus Lectures, Quasi-Static Analyses, Inc., U.S.A, 2005.
  • C. Yang, Y. Tian, P. Xu, S. Yao, Z. Li, and M.S. Alqahtani, Crashworthiness optimization of a multicellular thin-walled tube with triangular cells, Mech. Adv. Mater. Struct., vol. 29, no. 28, pp. 7277–7293, 2022. DOI: 10.1080/15376494.2021.1995548.
  • D. Al Galib, and A. Limam, Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes, Thin. Walled Struct., vol. 42, no. 8, pp. 1103–1137, 2004. DOI: 10.1016/j.tws.2004.03.001.
  • L. Morello, L.R. Rossini, G. Pia, and A. Tonoli, Introduction to Volume I. In: The Automotive Body: Volume I: Components Design, Morello, Eds. Dordrecht, Netherlands: Springer, 2011. pp. 1–2
  • Q. Li, E. Li, T. Chen, L. Wu, G. Wang, and Z. He, Improve the frontal crashworthiness of vehicle through the design of front rail, Thin. Walled Struct., vol. 162, pp. 107588, 2021. DOI: 10.1016/j.tws.2021.107588.
  • H. Yin, X. Zheng, G. Wen, C. Zhang, and Z. Wu, Design optimization of a novel bio-inspired 3D porous structure for crashworthiness, Compos. Struct., vol. 255, pp. 112897, 2021. DOI: 10.1016/j.compstruct.2020.112897.
  • X. Deng, S. Qin, and J. Huang, Energy absorption characteristics of axially varying thickness lateral corrugated tubes under axial impact loading, Thin. Walled Struct., vol. 163, pp. 107721, 2021. DOI: 10.1016/j.tws.2021.107721.
  • W. Guan, G. Gao, and Y. Yu, Crushing analysis and multiobjective crashworthiness optimization of combined shrinking circular tubes under impact loading, Struct Multidisc Optim., vol. 64, no. 3, pp. 1649–1667, 2021. DOI: 10.1007/s00158-021-02938-8.
  • Y. Zhang, G. Sun, X. Xu, G. Li, and Q. Li, Multiobjective crashworthiness optimization of hollow and conical tubes for multiple load cases, Thin. Walled Struct., vol. 82, pp. 331–342, 2014. DOI: 10.1016/j.tws.2014.05.006.
  • J. Fang, Y. Gao, G. Sun, N. Qiu, and Q. Li, On design of multi-cell tubes under axial and oblique impact loads, Thin. Walled Struct., vol. 95, pp. 115–126, 2015. DOI: 10.1016/j.tws.2015.07.002.
  • H. Huang, and S. Xu, Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads, Thin. Walled Struct., vol. 144, pp. 106333, 2019. DOI: 10.1016/j.tws.2019.106333.
  • E.I. Albak, Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions, Thin. Walled Struct., vol. 164, pp. 107886, 2021. DOI: 10.1016/j.tws.2021.107886.
  • S.E. Alkhatib, F. Tarlochan, A. Hashem, and S. Sassi, Collapse behavior of thin-walled corrugated tapered tubes under oblique impact, Thin. Walled Struct., vol. 122, pp. 510–528, 2018. /01/01/2018, DOI: 10.1016/j.tws.2017.10.044.
  • S.E. Alkhatib, M.S. Matar, F. Tarlochan, O. Laban, A.S. Mohamed, and N. Alqwasmi, Deformation modes and crashworthiness energy absorption of sinusoidally corrugated tubes manufactured by direct metal laser sintering, Engin. Struct., vol. 201, pp. 109838, 2019. DOI: 10.1016/j.engstruct.2019.109838.
  • A. Eyvazian, M. K. Habibi, A.M. Hamouda, and R. Hedayati, Axial crushing behavior and energy absorption efficiency of corrugated tubes, Mater. Design (1980-2015)., vol. 54, pp. 1028–1038, 2014. DOI: 10.1016/j.matdes.2013.09.031.
  • S. Chen, H. Yu, and J. Fang, A novel multi-cell tubal structure with circular corners for crashworthiness, Thin. Walled Struct., vol. 122, pp. 329–343, 2018. DOI: 10.1016/j.tws.2017.10.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.