208
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Resonant frequency tuning of a novel piezoelectric vibration energy harvester (PVEH)

, &
Received 20 Jul 2022, Accepted 27 Apr 2023, Published online: 17 May 2023

References

  • Siang, J. Lim, M. H. Salman, and Leong, M., Review of vibration-based energy harvesting technology: mechanism and architectural approach, Int. J. Energy Res., vol. 42, no. 5, pp. 1866–1893, 2018. DOI: 10.1002/er.3986.
  • N. Elvin, and A. Erturk, Advances in Energy Harvesting Methods, Springer Science & Business Media, Springer, New York. 2013.
  • S. Roundy, and Y. Zhang, Toward Self-Tuning Adaptive Vibration-Based Microgenerators, In Proceedings of the Smart Structures, Devices, and Systems II; SPIE, February 28 2005; Vol. 5649, pp. 373–384.
  • S.P. Beeby, M.J. Tudor, and N.M. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol., vol. 17, no. 12, pp. R175–R195, 2006. DOI: 10.1088/0957-0233/17/12/R01.
  • Priya, S., & Inman, D. J. (Eds.) Energy Harvesting Technologies, vol. 21, p. 2. New York: Springer, 2009.
  • M.R. Phillips, and G.P. Carman, Numerical analysis of an active thermomagnetic device for thermal energy harvesting, Trans. ASME, J. Energy Resour. Technol., vol. 142, no. 8, pp. 082102, 2020. DOI: 10.1115/1.4046273.
  • L. Wang, L. Zhao, G. Luo, Y. Zhao, P. Yang, Z. Jiang, and R. Maeda, System level design of wireless sensor node powered by piezoelectric vibration energy harvesting, Sens. Actuators Phys., vol. 310, pp. 112039, 2020. DOI: 10.1016/j.sna.2020.112039.
  • S. Kundu, and H.B. Nemade, Piezoelectric vibration energy harvester with tapered substrate thickness for uniform stress, Microsyst. Technol., vol. 27, no. 1, pp. 105–113, 2021. DOI: 10.1007/s00542-020-04922-6.
  • H. Yoon, M. Kim, C.-S. Park, and B.D. Youn, Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations, Smart Mater. Struct., vol. 27, no. 1, pp. 015004, 2017. DOI: 10.1088/1361-665X/aa95ed.
  • R. Chen, L. Ren, H. Xia, X. Yuan, and X. Liu, Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester, Sens. Actuators Phys., vol. 230, pp. 1–8, 2015. DOI: 10.1016/j.sna.2015.03.038.
  • Vibration Energy Harvesting of Multifunctional Carbon Fiber Composite Laminate Structures – ScienceDirect. Available from https://www.sciencedirect.com/science/article/pii/S0266353819302751?casa_token=EwXeXdWtsQ4AAAAA:t6sDGVGH4wp1wlpUU0zVSd9xUKfi35S114RAsac0oCJajZNIE3uQ-tAzSSxTnKCsjMz0Hjk2UCg (accessed on 16 November 2021).
  • Semi-Flexible Bimetal-Based Thermal Energy Harvesters - IOPscience Available from https://doi.org/10.1088/0964-1726/22/2/025021/meta (accessed on 19 November 2021).
  • A Review of Commercial Energy Harvesters for Autonomous Sensors | IEEE Conference Publication | IEEE Xplore Available from https://ieeexplore.ieee.org/abstract/document/4258183 (accessed on 19 November 2021).
  • J. Wang, L. Geng, L. Ding, H. Zhu, and D. Yurchenko, The state-of-the-art review on energy harvesting from flow-induced vibrations, Appl. Energy, vol. 267, pp. 114902, 2020. DOI: 10.1016/j.apenergy.2020.114902.
  • C. Wei, and X. Jing, A comprehensive review on vibration energy harvesting: modelling and realization, Renew. Sustain. Energy Rev., vol. 74, pp. 1–18, 2017. DOI: 10.1016/j.rser.2017.01.073.
  • A. Mohanty, S. Parida, R.K. Behera, and T. Roy, Vibration energy harvesting: a review, J. Adv. Dielect., vol. 09, no. 04, pp. 1930001, 2019. DOI: 10.1142/S2010135X19300019.
  • N. Tran, M.H. Ghayesh, and M. Arjomandi, Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement, Int. J. Eng. Sci., vol. 127, pp. 162–185, 2018. DOI: 10.1016/j.ijengsci.2018.02.003.
  • B. Maamer, A. Boughamoura, A.M.R. Fath El-Bab, L.A. Francis, and F. Tounsi, A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes, Energy Convers. Manag., vol. 199, pp. 111973, 2019. DOI: 10.1016/j.enconman.2019.111973.
  • Modern Piezoelectric Energy-Harvesting Materials, | SpringerLink. Available from https://doi.org/10.1007/978-3-319-29143-7 (accessed on 16 November 2021).
  • Mechanical Design of Piezoelectric Energy Harvesters - 1st Edition. Available from https://www.elsevier.com/books/mechanical-design-of-piezoelectric-energy-harvesters/xu/978-0-12-823364-1 (accessed on 16 November 2021).
  • Energy Harvesting Technologies | SpringerLink. Available from: https://doi.org/10.1007/978-0-387-76464-1 (accessed on 16 November 2021).
  • A. Batra, B. Bohara, and J. Currie, Design, fabrication, and testing of piezoelectric energy harvesters. Des. Fabr. Test. Piezoelectric Energy Harvest. vol. SL41, pp. 1–58, 2018. DOI: 10.1117/3.2504734.ch1.
  • A. Crovetto, F. Wang, and O. Hansen, Modeling and optimization of an electrostatic energy harvesting device, J. Microelectromech. Syst., vol. 23, no. 5, pp. 1141–1155, 2014. DOI: 10.1109/JMEMS.2014.2306963.
  • A. Khaligh, P. Zeng, and C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 850–860, 2010. DOI: 10.1109/TIE.2009.2024652.
  • F. Narita, and M. Fox, A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications, Adv. Eng. Mater., vol. 20, no. 5, pp. 1700743, 2018. DOI: 10.1002/adem.201700743.
  • K.M. Farinholt, N.A. Pedrazas, D.M. Schluneker, D.W. Burt, and C.R. Farrar, An energy harvesting comparison of piezoelectric and ionically conductive polymers, J. Intell. Mater. Syst. Struct., vol. 20, no. 5, pp. 633–642, 2009. DOI: 10.1177/1045389X08099604.
  • S. Jamshidi, M. Dardel, M.H. Pashaei, and R.A. Alashti, Energy harvesting from limit cycle oscillation of a cantilever plate in low subsonic flow by ionic polymer metal composite, Proc. Inst. Mech. Eng. G J. Aerospace Eng., vol. 229, no. 5, pp. 814–836, 2015. DOI: 10.1177/0954410014540283.
  • B.R. Martin, 2005. Energy Harvesting Applications of Ionic Polymers. Doctoral dissertation, Virginia Tech.
  • C.K. Soh, Y. Yang, and S. Bhalla (Eds.). Smart Materials in Structural Health Monitoring, Control and Biomechanics, Springer Science & Business Media, Springer, Berlin Heidelberg, 2012.
  • M. Song, Y. Zhang, M. Peng, and J. Zhai, Low frequency wideband nano generators for energy harvesting from natural environment, Nano Energy, vol. 6, pp. 66–72, 2014. DOI: 10.1016/j.nanoen.2014.02.009.
  • Z. Li, Z. Saadatnia, Z. Yang, and H. Naguib, A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting, Energy Convers. Manag., vol. 174, pp. 188–197, 2018. DOI: 10.1016/j.enconman.2018.08.018.
  • Microsystems for Energy Harvesting, | IEEE Conference Publication | IEEE Xplore. Available from https://ieeexplore.ieee.org/abstract/document/5969888 (accessed on 19 November 2021).
  • A. Aladwani, O. Aldraihem, and A. Baz, A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier, Mech. Adv. Mater. Struct., vol. 21, no. 7, pp. 566–578, 2014. DOI: 10.1080/15376494.2012.699600.
  • S.S. Raju, M. Umapathy, and G. Uma, Design and analysis of high output piezoelectric energy harvester using non uniform beam, Mech. Adv. Mater. Struct., vol. 27, no. 3, pp. 218–227, 2020. DOI: 10.1080/15376494.2018.1472341.
  • M. Askari, E. Brusa, and C. Delprete, Design and modeling of a novel multi-beam piezoelectric smart structure for vibration energy harvesting, Mech. Adv. Mater. Struct., vol. 29, no. 28, pp. 7519–7541, 2022. DOI: 10.1080/15376494.2022.2104975.
  • S.K. Panda, and J. Srinivas, Electro-structural analysis and optimization studies of laminated composite beam energy harvester, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4193–4205, 2022. DOI: 10.1080/15376494.2021.1922787.
  • L. Meng, A. Li, and G. Wei, Electromechanical coupling analysis of three-dimensional braided piezoelectric composites energy harvester, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6585–6594, 2022. DOI: 10.1080/15376494.2021.1982089.
  • R.R. Chand, and A. Tyagi, Parabolic tapering piezoelectric rotational energy harvester: numerical analysis with experimental validation, Mech. Adv. Mater. Struct., pp. 1–10, 2022. DOI: 10.1080/15376494.2022.2080893.
  • S. Dhote, J. Zu, and Y. Zhu, A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring, Appl. Phys. Lett., vol. 106, no. 16, pp. 163903, 2015. DOI: 10.1063/1.4919000.
  • E.S. Leland, and P.K. Wright, Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload, Smart Mater. Struct., vol. 15, no. 5, pp. 1413–1420, 2006. DOI: 10.1088/0964-1726/15/5/030.
  • Y. Hu, H. Xue, and H. Hu, A piezoelectric power harvester with adjustable frequency through axial preloads, Smart Mater. Struct., vol. 16, no. 5, pp. 1961–1966, 2007. DOI: 10.1088/0964-1726/16/5/054.
  • C. Eichhorn, F. Goldschmidtboeing, and P. Woias, A frequency tunable piezoelectric energy converter based on a cantilever beam, Proc. PowerMEMS, vol. 9, pp. 309–312, 2008.
  • H. Zhao, X. Wei, Y. Zhong, and P. Wang, A direction self-tuning two-dimensional piezoelectric vibration energy harvester, Sensors, vol. 20, no. 1, pp. 77, 2019. DOI: 10.3390/s20010077.
  • B. Debnath, and R. Kumar, Design and simulation study of a new flared-U shaped springs based mems piezoelectric vibration energy harvester. In Proceedings of the, 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), October 2020, pp. 101–105. DOI: 10.1109/GUCON48875.2020.9231097.
  • S. Dhote, Z. Yang, K. Behdinan, and J. Zu, Enhanced broadband multi-mode compliant orthoplanar spring piezoelectric vibration energy harvester using magnetic force, Int. J. Mech. Sci., vol. 135, pp. 63–71, 2018. DOI: 10.1016/j.ijmecsci.2017.11.012.
  • V.R. Challa, M.G. Prasad, Y. Shi, and F.T. Fisher, A vibration energy harvesting device with bidirectional resonance frequency tunability, Smart Mater. Struct., vol. 17, no. 1, pp. 015035, 2008. DOI: 10.1088/0964-1726/17/01/015035.
  • J. Heit, D. Christensen, and S. Roundy, A Vibration Energy Harvesting Structure, Tunable Over a Wide Frequency Range Using Minimal Actuation.; American Society of Mechanical Engineers Digital Collection, February 20, 2014.
  • C. Shi, F. Li, and J. Zhao, An advanced folded piezoelectric vibration energy harvester with low resonant frequency and high power density, AIP Adv., vol. 10, no. 6, pp. 065231, 2020. (赵建辉) DOI: 10.1063/5.0002844.
  • J.L. Kaplan, P. Bonello, and M. Alalwan, A simulation of the performance of a self-tuning energy harvesting cantilever beam, J. Phys.: Conf. Ser., vol. 744, pp. 012083, 2016. DOI: 10.1088/1742-6596/744/1/012083.
  • A frequency adjustable vibration energy harvester. Available from https://studylib.net/doc/14392284/a-frequency-adjustable-vibration-energy-harvester (accessed on 17 November 2021).
  • T. Fan, Nano porous piezoelectric energy harvester by surface effect model, Mech. Adv. Mater. Struct., vol. 27, no. 9, pp. 754–760, 2020. DOI: 10.1080/15376494.2018.1495791.
  • M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems, Sens. Actuators Phys., vol. 142, no. 1, pp. 329–335, 2008. DOI: 10.1016/j.sna.2007.07.004.
  • S. Raghavan, and R. Gupta, A novel design and performance results of an electrically tunable piezoelectric vibration energy harvester (TPVEH), J. Compos. Sci., vol. 4, no. 2, pp. 39, 2020. DOI: 10.3390/jcs4020039.
  • A. Aabloo, J. Belikov, V. Kaparin, and Ü. Kotta, Challenges and perspectives in control of ionic polymer-metal composite (IPMC) actuators: a survey, IEEE Access., vol. 8, pp. 121059–121073, 2020. DOI: 10.1109/ACCESS.2020.3007020.
  • S.Y. Jung, S.Y. Ko, J.O. Park, and S. Park, Enhanced ionic polymer–metal composite actuator with pore size–controlled porous Nafion membrane using silica sol–gel process, J. Intell. Mater. Syst. Struct., vol. 28, no. 11, pp. 1514–1523, 2017. DOI: 10.1177/1045389X16667550.
  • H. Tamagawa, K. Okada, T. Mulembo, M. Sasaki, K. Naito, G. Nagai, and K. Ikeda, Simultaneous enhancement of bending and blocking force of an ionic polymer-metal composite (IPMC) by the active use of its material characteristics change, Actuators., vol. 8, no. 1, pp. 29, 2019. DOI: 10.3390/act8010029.
  • A. Punning, M. Anton, M. Kruusmaa, and A. Aabloo, An engineering approach to reduced power consumption of IPMC (Ion-Polymer Metal Composite) actuators, In ICAR'05. Proceedings., 12th International Conference on Advanced Robotics, July 2005, pp. 856–863. IEEE.
  • US Patent application no. 2021015981
  • Energies | Free Full-Text | Tuning Techniques for Piezoelectric and Electromagnetic Vibration Energy Harvesters. Available from https://www.mdpi.com/1996-1073/13/3/527 (accessed on 8 November 2021).
  • An Investigation into the Performance of Macro-Fiber Composites for Sensing and Structural Vibration Applications – ScienceDirect. Available from https://www.sciencedirect.com/science/article/pii/S0888327003000815 (accessed on 2 November 2021).
  • S.-Q. Zhang, Y.-X. Li, and R. Schmidt, Modeling and simulation of macro-fiber composite layered smart structures, Compos. Struct., vol. 126, pp. 89–100, 2015. DOI: 10.1016/j.compstruct.2015.02.051.
  • A. Kovalovs, E. Barkanov, and S. Gluhihs, Active control of structures using macro-fiber composite (MFC), J. Phys.: Conf. Ser., vol. 93, pp. 012034, 2007. DOI: 10.1088/1742-6596/93/1/012034.
  • A.J. Schönecker, T. Daue, B. Brückner, C. Freytag, L. Hähne, and T. Rödig, Overview on macrofiber composite applications. In Proceedings of the, Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics; SPIE, April 6, 2006, vol. 6170, pp. 408–415.
  • M. Borowiec, M. Bocheński, J. Gawryluk, and M. Augustyniak, Analysis of the macro fiber composite characteristics for energy harvesting efficiency. In Awrejcewicz, J. (ed.), Proceedings of the Dynamical Systems: Theoretical and Experimental Analysis, Springer International Publishing: Cham, 2016, pp. 27–37.
  • Smart Material. Available from https://smart-material.com/?gclid=Cj0KCQjww4OMBhCUARIsAILndv6qddtvHWTild6JcUJNOwwwBxrs-R1B0CuwR-QXyzAmzUo0AH5yIEIaAoeBEALw_wcB (accessed on 2 November 2021).
  • Lagosh, A.V. Broyko, A.P. Kalyonov, V.E. Khmelnitskiy, I.K. Luchinin, and V. V., Modeling of IPMC Actuator, In Proceedings of the, 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); IEEE, 2017. pp. 916–918. DOI: 10.1109/EIConRus.2017.7910705.
  • Quasi-Static Positioning of Ionic Polymer-Metal Composite (IPMC) Actuators | Semantic Scholar. Available from https://www.semanticscholar.org/paper/Quasi-Static-Positioning-of-Ionic-Polymer-Metal-Chen-Tan/46b715ee8f50ca522c07f7bc5fe6fa256b212c10 (accessed on 5 November 2021).
  • B. Bhandari, G.-Y. Lee, and S.-H. Ahn, A review on IPMC material as actuators and sensors: fabrications, characteristics and applications, Int. J. Precis. Eng. Manuf., vol. 13, no. 1, pp. 141–163, 2012. DOI: 10.1007/s12541-012-0020-8.
  • P. Brunetto, L. Fortuna, P. Giannone, S. Graziani, and F. Pagano, A small scale viscometer based on an IPMC actuator and an IPMC sensor. In Proceedings of the 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings; IEEE, 2010. pp. 585–589. DOI: 10.1109/IMTC.2010.5488156.
  • X.L. Chang, P.S. Chee, E.H. Lim, and R.C.C. Tan, A novel crenellated ionic polymer-metal composite (IPMC) actuator with enhanced electromechanical performances, Smart Mater. Struct., vol. 28, no. 11, pp. 115011, 2019. DOI: 10.1088/1361-665X/ab41df.
  • S. Nemat-Nasser, and J. Li, Electromechanical response of ionic polymer– metal composites, J. Appl. Phys., vol. 87, no. 7, pp. 3321–3331, 2000. DOI: 10.1063/1.372343.
  • H. Li, C. Tian, and Z.D. Deng, Energy harvesting from low frequency applications using piezoelectric materials, Appl. Phys. Rev., vol. 1, no. 4, pp. 041301, 2014. DOI: 10.1063/1.4900845.
  • L. Yang, D. Zhang, X. Zhang, A. Tian, and X. Wang, Models of displacement and blocking force of ionic - polymer metal composites based on actuation mechanism, Appl. Phys. A., vol. 126, no. 5, pp. 1–7, 2020. DOI: 10.1007/s00339-020-03546-x.
  • Y. Zhao, D. Xu, J. Sheng, Q. Meng, D. Wu, L. Wang, J. Xiao, W. Lv, Q. Chen, and D. Sun, Biomimetic beetle-inspired flapping air vehicle actuated by ionic polymer-metal composite actuator, Appl. Bionics Biomech., vol. 2018, pp. 1–7, 2018. DOI: 10.1155/2018/3091579.
  • V. Palmre, D. Pugal, K.J. Kim, K.K. Leang, K. Asaka, and A. Aabloo, Nanothorn electrodes for ionic polymer-metal composite artificial muscles, Sci Rep., vol. 4, no. 1, pp. 1–10, 2014. DOI: 10.1038/srep06176.
  • M. Shahinpoor. Potential applications of electroactive polymer sensors and actuators in MEMS technologies. In Smart Materials, Vol. 4234. International Society for Optics and Photonics, 2001. pp. 203–214

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.