90
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Domain switching model embedded on scaled boundary finite element method for nonlinear hysteretic behavior of ferroelectrics

ORCID Icon & ORCID Icon
Pages 5000-5012 | Received 31 Jan 2023, Accepted 22 Apr 2023, Published online: 13 May 2023

References

  • B. Jaffe, W. Cook, and H. Jaffe, The piezoelectric effect in ceramics. In: Piezoelectric Ceramics, Academic Press, London and New York, pp. 7–21, 1971.
  • M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 2001.
  • J. Shieh, J. Huber, and N. Fleck, An evaluation of switching criteria for ferroelectrics under stress and electric field, Acta Mater., vol. 51, no. 20, pp. 6123–6137, 2003. DOI: 10.1016/S1359-6454(03)00432-4.
  • M. Kamlah, Ferroelectric and ferroelastic piezoceramics modeling of electromechanical hysteresis phenomena, Contin. Mech. Thermodyn., vol. 13, no. 4, pp. 219–268, 2001. DOI: 10.1007/s001610100052.
  • C.M. Landis, Non-linear constitutive modeling of ferroelectrics, Curr. Opin. Solid State Mater. Sci., vol. 8, no. 1, pp. 59–69, 2004. DOI: 10.1016/j.cossms.2004.03.010.
  • J. Huber, Micromechanical modelling of ferroelectrics, Curr. Opin. Solid State Mater. Sci., vol. 9, no. 3, pp. 100–106, 2005. DOI: 10.1016/j.cossms.2006.05.001.
  • R.M. McMeeking and C.M. Landis, A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics, Int. J. Eng. Sci., vol. 40, no. 14, pp. 1553–1577, 2002. DOI: 10.1016/S0020-7225(02)00033-2.
  • A. Mielke and A.M. Timofte, Modeling and analytical study for ferroelectric materials, Mech. Adv. Mater. Struct., vol. 13, no. 6, pp. 457–462, 2006. DOI: 10.1080/15376490600862806.
  • D.S. Ibrahim, S. Beibei, O.A. Oluseyi, Z. Peng, and U. Sharif, Nonlinear dynamic analysis of a reciprocative magnetic coupling on performance of piezoelectric energy harvester interfaced with dc circuit, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5488–5500, 2022. DOI: 10.1080/15376494.2021.1956654.
  • D.S. Ibrahim, Y. Feng, X. Shen, U. Sharif, and A.A. Umar, On geometrical configurations of vibration-driven piezoelectric energy harvesters for optimum energy transduction: A critical review, Mech. Adv. Mater. Struct., vol. 30, no. 7, pp. 1340–1356, 2023. DOI: 10.1080/15376494.2022.2031357.
  • S. Hwang, C. Lynch, and R. McMeeking, Ferroelectric/ferroelastic interactions and a polarization switching model, Acta Metall. Mater., vol. 43, no. 5, pp. 2073–2084, 1995. DOI: 10.1016/0956-7151(94)00379-V.
  • T. Michelitsch and W. Kreher, A simple model for the nonlinear material behavior of ferroelectrics, Acta Mater., vol. 46, no. 14, pp. 5085–5094, 1998. DOI: 10.1016/S1359-6454(98)00178-5.
  • W. Lu, D.-N. Fang, C. Li, and K.-C. Hwang, Nonlinear electric–mechanical behavior and micromechanics modelling of ferroelectric domain evolution, Acta Mater., vol. 47, no. 10, pp. 2913–2926, 1999. DOI: 10.1016/S1359-6454(99)00153-6.
  • G. Arlt, A physical model for hysteresis curves of ferroelectric ceramics, Ferroelectrics, vol. 189, no. 1, pp. 103–119, 1996. DOI: 10.1080/00150199608213410.
  • S.C. Hwang, J.E. Huber, R.M. McMeeking, and N.A. Fleck, The simulation of switching in polycrystalline ferroelectric ceramics, J. Appl. Phys., vol. 84, no. 3, pp. 1530–1540, 1998. DOI: 10.1063/1.368219.
  • W. Chen and C. Lynch, A micro-electro-mechanical model for polarization switching of ferroelectric materials, Acta Mater., vol. 46, no. 15, pp. 5303–5311, 1998. DOI: 10.1016/S1359-6454(98)00207-9.
  • J. Huber, N. Fleck, C. Landis, and R. McMeeking, A constitutive model for ferroelectric polycrystals, J. Mech. Phys. Solids., vol. 47, no. 8, pp. 1663–1697, 1999. DOI: 10.1016/S0022-5096(98)00122-7.
  • M. Kamlah, A.C. Liskowsky, R.M. McMeeking, and H. Balke, Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model, Int. J. Solids Struct., vol. 42, no. 9–10, pp. 2949–2964, 2005. DOI: 10.1016/j.ijsolstr.2004.09.045.
  • A. Menzel, A. Arockiarajan, and S. Sivakumar, Two models to simulate rate-dependent domain switching effects—application to ferroelastic polycrystalline ceramics, Smart Mater. Struct., vol. 17, no. 1, pp. 015026, 2008. DOI: 10.1088/0964-1726/17/01/015026.
  • S. Aimmanee and H. Asanuma, Micromechanics-based predictions of effective properties of a 1–3 piezocomposite reinforced with hollow piezoelectric fibers, Mech. Adv. Mater. Struct., vol. 27, no. 22, pp. 1873–1887, 2020. DOI: 10.1080/15376494.2018.1529842.
  • M. Haghgoo, M.-K. Hassanzadeh-Aghdam, and R. Ansari, Effect of piezoelectric interphase on the effective magneto-electro-elastic properties of three-phase smart composites: A micromechanical study, Mech. Adv. Mater. Struct., vol. 26, no. 23, pp. 1935–1950, 2019. DOI: 10.1080/15376494.2018.1455932.
  • H. Kessler and H. Balke, On the local and average energy release in polarization switching phenomena, J. Mech. Phys. Solids, vol. 49, no. 5, pp. 953–978, 2001. DOI: 10.1016/S0022-5096(00)00073-9.
  • A. Pathak and R.M. McMeeking, Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading, J. Mech. Phys. Solids, vol. 56, no. 2, pp. 663–683, 2008. DOI: 10.1016/j.jmps.2007.05.003.
  • K. Jayabal, A. Menzel, A. Arockiarajan, and S. Srinivasan, Micromechanical modelling of switching phenomena in polycrystalline piezoceramics: Application of a polygonal finite element approach, Comput Mech., vol. 48, no. 4, pp. 421–435, 2011. DOI: 10.1007/s00466-011-0595-4.
  • A. Haug, J.E. Huber, P.R. Onck, and E. Van der Giessen, Multi-grain analysis versus self-consistent estimates of ferroelectric polycrystals, J. Mech. Phys. Solids., vol. 55, no. 3, pp. 648–665, 2007. DOI: 10.1016/j.jmps.2006.06.009.
  • S.-J. Kim and Q. Jiang, A finite element model for rate-dependent behavior of ferroelectric ceramics, Int. J. Solids Struct., vol. 39, no. 4, pp. 1015–1030, 2002. DOI: 10.1016/S0020-7683(01)00126-3.
  • D.K. Valecha, K. Jayabal, and A. Rajagopal, Temperature-dependent model for ferroelectrics embedded into two-dimensional polygonal finite element framework, Mech. Adv. Mater. Struct., pp. 1–17, 2023. DOI: 10.1080/15376494.2023.2169793.
  • Z. Yin, J. Zhang, F. Yang, W. Ye, J. Liu, and G. Lin, An efficient scaled boundary finite element approach in bending and bucking analysis of functionally graded piezoelectric plates, Eng. Anal. Boundary Elem., vol. 132, pp. 168–181, 2021. DOI: 10.1016/j.enganabound.2021.07.015.
  • H. Nasser, F. Biscani, and S. Belouettar, Effect of matrix properties on the overall piezoelectric constants of piezocomposite transducers, Mech. Adv. Mater. Struct., vol. 18, no. 7, pp. 531–539, 2011. DOI: 10.1080/15376494.2011.605011.
  • Z. Shijie, Z. Xie, and H. Wang, Theoretical and finite element modeling of piezoelectric nanobeams with surface and flexoelectricity effects, Mech. Adv. Mater. Struct., vol. 26, no. 15, pp. 1261–1270, 2019. DOI: 10.1080/15376494.2018.1432799.
  • C. Li, H. Man, C. Song, and W. Gao, Fracture analysis of piezoelectric materials using the scaled boundary finite element method, Eng. Fract. Mech., vol. 97, pp. 52–71, 2013. DOI: 10.1016/j.engfracmech.2012.10.019.
  • S. Natarajan, E.T. Ooi, I. Chiong, and C. Song, Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation, Finite Elem. Anal. Des., vol. 85, pp. 101–122, 2014. DOI: 10.1016/j.finel.2014.03.006.
  • Z. Li, J. Ye, L. Liu, H. Cai, W. He, G. Cai, and Y. Wang, Evaluation of piezoelectric and mechanical properties of the piezoelectric composites with local damages, Mech. Adv. Mater. Struct., vol. 29, no. 23, pp. 3429–3446, 2022. DOI: 10.1080/15376494.2021.1901322.
  • C. Song, The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation, Wiley, New Jersey, 2018.
  • C. Li, Fracture Analysis of Piezoelectric Composites Using Scaled Boundary Finite Element Method [Ph.D. thesis], UNSW Sydney, Sydney, 2014.
  • C. Song, and J.P. Wolf, The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics, Comput. Methods Appl. Mech. Eng., vol. 147, no. 3–4, pp. 329–355, 1997. DOI: 10.1016/S0045-7825(97)00021-2.
  • C. Song, A matrix function solution for the scaled boundary finite-element equation in statics, Comput. Methods Appl. Mech. Eng., vol. 193, no. 23–26, pp. 2325–2356, 2004. DOI: 10.1016/j.cma.2004.01.017.
  • V. Gupta, M. Sharma, N. Thakur, and S. Singh, Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures, Smart Mater. Struct., vol. 20, no. 10, pp. 105023, 2011. DOI: 10.1088/0964-1726/20/10/105023.
  • M. Kuna, Fracture mechanics of piezoelectric materials—where are we right now?, Eng. Fract. Mech., vol. 77, no. 2, pp. 309–326, 2010. DOI: 10.1016/j.engfracmech.2009.03.016.
  • X.L. Li, and L.M. Zhou, An element-free galerkin method for electromechanical coupled analysis in piezoelectric materials with cracks, Adv. Mech. Eng., vol. 9, no. 2, pp. 168781401769373, 2017. DOI: 10.1177/1687814017693733.
  • F. Li, D. Fang, J.-J. Lee, and H.C. Kim, Effects of compressive stress on the nonlinear electromechanical behavior of ferroelectric ceramics, Sci. China Ser. E., vol. 49, no. 1, pp. 29–37, 2006. DOI: 10.1007/s11431-004-5120-y.
  • D. Zhou, M. Kamlah, and B. Laskewitz, Multi-axial non-proportional polarization rotation tests of soft PZT piezoceramics under electric field loading. In: Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics, SPIE, Bellingham, vol. 6170, pp. 49–57, 2006
  • J.E. Huber, and N. Fleck, Multi-axial electrical switching of a ferroelectric: Theory versus experiment, J. Mech. Phys. Solids., vol. 49, no. 4, pp. 785–811, 2001. DOI: 10.1016/S0022-5096(00)00052-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.