171
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Failure mechanism and impact resistance of all GFRP Miura-ori with platforms sandwich structure under low-velocity impact experiments

& ORCID Icon
Received 25 Mar 2023, Accepted 15 May 2023, Published online: 09 Jun 2023

References

  • P. Moradweysi, P.M. Santucci, G. Carta, T. Goudarzi, M.M. Aghdam, A. Baldi, and M. Brun, Design and analysis of a thick Miura-ori folded structure with large negative Poisson’s ratio, Mech. Adv. Mater. Struct., pp. 1–19, 2022. DOI: 10.1080/15376494.2022.2126567.
  • B. Liu, and Y.G. Sun, Modal response of carbon-fiber-reinforced Miura-ori core sandwich panels, Mech. Adv. Mater. Struct., vol. 27, no. 5, pp. 364–372, 2020. DOI: 10.1080/15376494.2018.1473536.
  • T. Kankkunen, J. Niiranen, J. Kouko, M. Palmu, and K. Peltonen, Parametric linear finite element stress and stability analysis of isotropic and orthotropic self-supporting Miura-ori structures, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 5808–5822, 2022. DOI: 10.1080/15376494.2021.1965679.
  • C.A. Velez, A.-S. Kaddour, S.V. Georgakopoulos, D.S. Bolanos, C. Ynchausti, S. Magleby, and L.L. Howell, Reconfigurable and deployable Miura-ori RA analysis for satellite applications. In: 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON), pp. 1–3, Sand Key, FL, USA, 2021. DOI: 10.1109/WAMICON47156.2021.9443586.
  • L. Wilson, S. Pellegrino, and R. Danner, Origami sunshield concepts for space telescopes. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013. DOI: 10.2514/6.2013-1594.
  • M. Thota, and K.W. Wang, Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation, J. Appl. Phys., vol. 122, no. 15, pp. 154901, 2017. DOI: 10.1063/1.4991026.
  • R. Tang, H. Huang, H. Tu, H. Liang, M. Liang, Z. Song, Y. Xu, H. Jiang, and H. Yu, Origami-enabled deformable silicon solar cells, Appl. Phys. Lett., vol. 104, no. 8, pp. 083501, 2014. DOI: 10.1063/1.4866145.
  • K. Miura, Zeta-core sandwich – Its concept and realization, Instit. Space Aeronaut. Sci., no. 480, pp.137–164, 1972.
  • L.L. Yan, Y.W. Zhang, K.Y. Zhu, and C. Zhang, Behavior of tube-reinforced double-layer honeycomb sandwich structure subjected to low-velocity impact, Mech. Adv. Mater. Struct., vol. 30, no. 2, pp. 249–261, 2023. DOI: 10.1080/15376494.2021.2011992.
  • P.A. Shirbhate, and M.D. Goel, Investigation of effect of perforations in honeycomb sandwich structure for enhanced blast load mitigation, Mech. Adv. Mater. Struct., pp. 1–16, 2022. DOI: 10.1080/15376494.2022.2076958.
  • C. Zhou, Z.J. Wang, and T.J. Hou, Prediction of effective thermal conductivity of an integrated thermal protection system based on V-pattern folded core, Missiles Space Veh., vol. 368, no. 03, pp. 21–28, 2019. (Chinese).
  • X. Yu, H.B. Fang, F.S. Cui, L. Cheng, and Z.B. Lu, Origami-inspired foldable sound barrier designs, J. Sound Vib., vol. 442, pp. 514–526, 2019. DOI: 10.1016/j.jsv.2018.11.025.
  • S. Fischer, K. Drechsler, S. Kilchert, and A. Johnson, Mechanical tests for foldcore base material properties, Compos. A appl. Sci. Manuf.., vol. 40, no. 12, pp. 1941–1952, 2009. DOI: 10.1016/j.compositesa.2009.03.005.
  • X.M. Xiang, Z. Fu, S. Zhang, G. Lu, N.S. Ha, Y. Liang, and X. Zhang, The mechanical characteristics of graded Miura-ori metamaterials, Mater. Des., vol. 211, pp. 110173, 2021. DOI: 10.1016/j.matdes.2021.110173.
  • E. Yuping, G. Yang, X.M. Zhu, G.X. Lu, and J.J. Sun, Experimental study on the flat-wise compression of foldcore sandwich paperboard, Thin. Walled Struct., vol. 181, pp. 110017, 2022. DOI: 10.1016/j.tws.2022.110017.
  • Y. Lv, Y. Zhang, N. Gong, Z.X. Li, G.X. Lu, and X.M. Xiang, On the out-of-plane compression of a Miura-ori patterned sheet, Int. J. Mech. Sci., vol. 161-162, pp. 105022, 2019. DOI: 10.1016/j.ijmecsci.2019.105022.
  • Y. Klett, F. Muhs, P. Middendorf, and M. Grzeschik, Out-of-plane compressive performance of a non-flammable hybrid foldcore-foam sandwich, Extreme Mech. Lett., vol. 54, pp. 101747, 2022. DOI: 10.1016/j.eml.2022.101747.
  • Y.T. Du, C.P. Song, J. Xiong, and L.Z. Wu, Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami, Compos. Sci. Technol., vol. 174, pp. 94–105, 2019. DOI: 10.1016/j.compscitech.2019.02.019.
  • Y.T. Du, T. Keller, C.P. Song, L.Z. Wu, and J. Xiong, Origami-inspired carbon fiber-reinforced composite sandwich materials – Fabrication and mechanical behavior, Compos. Sci. Technol., vol. 205, pp. 108667, 2021. DOI: 10.1016/j.compscitech.2021.108667.
  • X.M. Xiang, G. Lu, D. Ruan, Z. You, and M. Zolghadr, Large deformation of an arc-Miura structure under quasi-static load, Compos. Struct., vol. 182, pp. 209–222, 2017. DOI: 10.1016/j.compstruct.2017.09.023.
  • J.Y. Gao, and Z. You, Origami-inspired Miura-ori honeycombs with a self-locking property, Thin. Walled Struct., vol. 171, pp. 108806, 2022. DOI: 10.1016/j.tws.2021.108806.
  • Z.S. Yue, B. Han, Z.Y. Wang, M. Yang, Q. Zhang, and T.J. Lu, Data-driven multi-objective optimization of ultralight hierarchical origami-corrugation meta-sandwich structures, Compos. Struct., vol. 303, pp. 116334, 2023. DOI: 10.1016/j.compstruct.2022.116334.
  • K.L. Huang, K.Y. Song, X. Zhou, B. Ji, and H. Wang, Quasi-static mechanical properties of composite foldcores based on the BCH patterns, Thin. Walled Struct., vol. 171, pp. 108776, 2022. DOI: 10.1016/j.tws.2021.108776.
  • X. Zhou, H. Wang, and Z. You, Mechanical properties of Miura-based folded cores under quasi-static loads, Thin. Walled Struct., vol. 82, pp. 296–310, 2014. DOI: 10.1016/j.tws.2014.05.001.
  • S. Heimbs, P. Middendorf, C. Hampf, F. Hähnel, and K. Wolf, Aircraft sandwich structures with folded core under impact load. In: Proceedings of the 8th International Conference on Sandwich Structures, May 6–8, ICSS8, Porto, Portugal, 2008.
  • S. Heimbs, J. Cichosz, M. Klaus, S. Kilchert, and A.F. Johnson, Sandwich structures with textile-reinforced composite foldcores under impact loads, Compos. Struct., vol. 92, no. 6, pp. 1485–1497, 2010. DOI: 10.1016/j.compstruct.2009.11.001.
  • S. Kilchert, A.F. Johnson, and H. Voggenreiter, Modelling the impact behaviour of sandwich structures with folded composite cores, Compos. A appl. Sci. Manuf., vol. 57, pp. 16–26, 2014. DOI: 10.1016/j.compositesa.2013.10.023.
  • S. Fischer, Aluminium foldcores for sandwich structure application: Mechanical properties and FE-simulation, Thin. Walled Struct., vol. 90, pp. 31–41, 2015. DOI: 10.1016/j.tws.2015.01.003.
  • K. Miura, and S. Pellegrino, Sandwich structures, In: Forms and Concepts for Lightweight Structures, Cambridge University Press, Cambridge, pp. 158–188, 2020. DOI: 10.1017/9781139048569.007.
  • A. Pydah, and R.C. Batra, Blast loading of bumper shielded hybrid two-core Miura-ori/honeycomb core sandwich plates, Thin. Walled Struct., vol. 129, pp. 45–57, 2018. DOI: 10.1016/j.tws.2018.03.020.
  • L.X. Cong, Y.G. Sun, L. Gao, and P. Chen, Preparation and compression performance of an improved V-type folded GFRP sandwich structure, Acta Mater. Compos. Sinica., vol. 31, no. 2, pp. 456–464, 2014. (Chinese).
  • J.M. Gattas, W.N. Wu, and Z. You, Miura-base rigid Origami: Parameterizations of first-level derivative and piecewise geometries, J. Mech. Des., vol. 135, no. 11, pp. 111011, 2013. DOI: 10.1115/1.4025380.
  • Y. Chen, X.Z. Zeng, Y.F. Deng, and G. Wei, Investigation on manufacturing and low-velocity impact performance of all-composite sandwich structure with S-type foldcore, Compos. Struct., vol. 290, pp. 115539, 2022. DOI: 10.1016/j.compstruct.2022.115539.
  • Y.F. Deng, N. Zhou, X. Li, X. Wang, G. Wei, and H.R. Jia, Dynamic response and failure mechanism of S-shaped CFRP foldcore sandwich structure under low-velocity impact, Thin. Walled Struct., vol. 173, pp. 109007, 2022. DOI: 10.1016/j.tws.2022.109007.
  • R. Olsson, Mass criterion for wave controlled impact response of composite plates, Compos. A appl. Sci. Manuf., vol. 31, no. 8, pp. 879–887, 2000. DOI: 10.1016/S1359-835X(00)00020-8.
  • G.B. Chai, and S. Zhu, A review of low-velocity impact on sandwich structures, Proc. Instit. Mech. Engineers L J. Mater. Des. Appl., vol. 225, no. 4, pp. 207–230, 2011. DOI: 10.1177/1464420711409985.
  • Y.F. Deng, B. Liu, X.Y. Hu, J. Du, and X. Wang, Low-velocity impact response and damage phenomena of hybrid S-shaped folded sandwich structure, Thin. Walled Struct., vol. 181, pp. 109972, 2022. DOI: 10.1016/j.tws.2022.109972.
  • R. Olsson, M.V. Donadon, and B.G. Falzon, Delamination threshold load for dynamic impact on plates, Int. J. Solids Struct., vol. 43, no. 10, pp. 3124–3141, 2006. DOI: 10.1016/j.ijsolstr.2005.05.005.
  • C. Atas, and O. Sayman, An overall view on impact response of woven fabric composite plates, Compos. Struct., vol. 82, no. 3, pp. 336–345, 2008. DOI: 10.1016/j.compstruct.2007.01.014.
  • Y.F. Deng, W.Q. Zhang, X.Z. Zeng, X.P. Liang, and C.P. Zhou, Experimental study of the low-velocity impact behavior of hybrid sandwich panel with S-shaped foldcore, Thin. Walled Struct., vol. 181, pp. 110057, 2022. DOI: 10.1016/j.tws.2022.110057.
  • J. Xue, and K. Kirane, Cylindrical microplane model for compressive kink band failures and combined friction/inelasticity in fiber composites I: formulation, Compos. Struct., vol. 289, pp. 115382, 2022. DOI: 10.1016/j.compstruct.2022.115589.
  • C. Atas, and C. Sevim, On the impact response of sandwich composites with cores of balsa wood and PVC foam, Compos. Struct., vol. 93, no. 1, pp. 40–48, 2010. DOI: 10.1016/j.compstruct.2010.06.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.