110
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Finite element modeling of the effective creep compliance of carbon nanotube-polymer nanocomposites: A critical microstructure-level investigation

, , &
Received 30 Mar 2023, Accepted 09 Jun 2023, Published online: 18 Jun 2023

References

  • H. Liu and L.C. Brinson, Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites, Compos. Sci. Technol., vol. 68, no. 6, pp. 1502–1512, 2008. DOI: 10.1016/j.compscitech.2007.10.033.
  • M. Ahmadi, R. Ansari, and M.K. Hassanzadeh-Aghdam, Low velocity impact analysis of beams made of short carbon fiber/carbon nanotube-polymer composite: a hierarchical finite element approach, Mech. Adv. Mater. Struct., vol. 26, no. 13, pp. 1104–1114, 2019. DOI: 10.1080/15376494.2018.1430276.
  • C. Wei, D. Srivastava, and K. Cho, Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, Nano Lett., vol. 2, no. 6, pp. 647–650, 2002. DOI: 10.1021/nl025554+.
  • S. Namilae, J. Li, and S. Chava, Improved piezoresistivity and damage detection application of hybrid carbon nanotube sheet-graphite platelet nanocomposites, Mech. Adv. Mater. Struct., vol. 26, no. 15, pp. 1333–1341, 2019. DOI: 10.1080/15376494.2018.1432812.
  • H. Essabir, M. Raji, and R. Bouhfid, Rheology and crystallization of polymer nanocomposites. In: Advanced Polymer Nanocomposites, Woodhead Publishing, United Kingdom, pp. 29–47, 2022.
  • P. Bhagabati, M. Rahaman, and D. Khastgir, Morphology and spectroscopy of polymer–carbon composites. Carbon-Containing Polymer Composites, Springer, Singapore, pp. 295–338, 2019.
  • J. Silvestre, N. Silvestre, and J. De Brito, Polymer nanocomposites for structural applications: recent trends and new perspectives, Mech. Adv. Mater. Struct., vol. 23, no. 11, pp. 1263–1277, 2016. DOI: 10.1080/15376494.2015.1068406.
  • S. Iijima, Helical microtubules of graphitic carbon, Nature., vol. 354, no. 6348, pp. 56–58, 1991. DOI: 10.1038/354056a0.
  • R.S. Ruoff, D. Qian, and W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, CR Phys., vol. 4, no. 9, pp. 993–1008, 2003. DOI: 10.1016/j.crhy.2003.08.001.
  • M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Sci., vol. 287, no. 5453, pp. 637–640, 2000. DOI: 10.1126/science.287.5453.637.
  • R. Ansari, R. Gholami, and H. Rouhi, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories, Compos. B: Eng., vol. 43, no. 8, pp. 2985–2989, 2012. DOI: 10.1016/j.compositesb.2012.05.049.
  • A. Alva, A. Bhagat, and S. Raja, Effective moduli evaluation of carbon nanotube reinforced polymers using micromechanics, Mech. Adv. Mater. Struct., vol. 22, no. 10, pp. 819–828, 2015. DOI: 10.1080/15376494.2013.864434.
  • C.S. Jarali, S.F. Patil, and S.C. Pilli, Hygro-thermo-electric properties of carbon nanotube epoxy nanocomposites with agglomeration effects, Mech. Adv. Mater. Struct., vol. 22, no. 6, pp. 428–439, 2015. DOI: 10.1080/15376494.2013.769654.
  • M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, J. Jamali, and R. Ansari, A new micromechanical method for the analysis of thermal conductivities of unidirectional fiber/CNT-reinforced polymer hybrid nanocomposites, Compos. B: Eng., vol. 175, pp. 107137, 2019. DOI: 10.1016/j.compositesb.2019.107137.
  • M. Haghgoo, R. Ansari, and M.K. Hassanzadeh-Aghdam, Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites, Compos. B: Eng., vol. 167, pp. 728–735, 2019. DOI: 10.1016/j.compositesb.2019.03.046.
  • Guedes, R.M. Ed., Creep and Fatigue in Polymer Matrix Composites, Woodhead Publishing, United Kingdom, 2019.
  • M. Hasanzadeh, R. Ansari, and M.K. Hassanzadeh-Aghdam, Micromechanical elastoplastic analysis of randomly oriented non-straight carbon nanotube-reinforced polymer nanocomposites, Mech. Adv. Mater. Struct., vol. 26, no. 20, pp. 1700–1710, 2019. DOI: 10.1080/15376494.2018.1444227.
  • R. Wei and W. Gao, Viscoelastic behavior of carbon nanotube-enriched epoxy matrix hybrid composites reinforced with unidirectional graphite fibers, Mech. Adv. Mater. Struct., vol. 28, no. 15, pp. 1588–1603, 2021. DOI: 10.1080/15376494.2019.1695027.
  • L.C. Tang, X. Wang, L.-X. Gong, k. Peng, L. Zhao, Q. Chen, L.-B. Wu, J.-X. Jiang, and G.-Q. Lai, Creep and recovery of polystyrene composites filled with graphene additives, Compos. Sci. Technol., vol. 91, pp. 63–70, 2014. DOI: 10.1016/j.compscitech.2013.11.028.
  • X. Shi, M.K. Hassanzadeh-Aghdam, and R. Ansari, Viscoelastic analysis of silica nanoparticle-polymer nanocomposites, Compos. B: Eng., vol. 158, pp. 169–178, 2019. DOI: 10.1016/j.compositesb.2018.09.084.
  • S.S.R. Nomula, D.K. Rathore, B.C. Ray, and R.K. Prusty, Creep performance of CNT reinforced glass fiber/epoxy composites: roles of temperature and stress, J. Appl. Polym. Sci., vol. 136, no. 25, pp. 47674, 2019. DOI: 10.1002/app.47674.
  • A. Anand, P. Banerjee, D. Sahoo, D.K. Rathore, R.K. Prusty, and B.C. Ray, Effects of temperature and load on the creep performance of CNT reinforced laminated glass fiber/epoxy composites, Int. J. Mech. Sci., vol. 150, pp. 539–547, 2019. DOI: 10.1016/j.ijmecsci.2018.09.048.
  • K. Hosseinpour and A.R. Ghasemi, Agglomeration and aspect ratio effects on the long-term creep of carbon nanotubes/fiber/polymer composite cylindrical shells, J. Sandwich Struct. Mater., vol. 23, no. 4, pp. 1272–1291, 2021. DOI: 10.1177/1099636219857200.
  • H. Varela-Rizo, M. Weisenberger, D.R. Bortz, and I. Martin-Gullon, Fracture toughness and creep performance of PMMA composites containing micro and nanosized carbon filaments, Compos. Sci. Technol., vol. 70, no. 7, pp. 1189–1195, 2010. DOI: 10.1016/j.compscitech.2010.03.005.
  • Z. Yao, D. Wu, C. Chen, and M. Zhang, Creep behavior of polyurethane nanocomposites with carbon nanotubes, Compos. A: Appl. Sci. Manuf., vol. 50, pp. 65–72, 2013. DOI: 10.1016/j.compositesa.2013.03.015.
  • A. Montazeri and N. Montazeri, Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content, Mater. Des., vol. 32, no. 4, pp. 2301–2307, 2011. DOI: 10.1016/j.matdes.2010.11.003.
  • O. Starkova, S.T. Buschhorn, E. Mannov, K. Schulte, and A. Aniskevich, Creep and recovery of epoxy/MWCNT nanocomposites, Compos. A: Appl. Sci. Manuf., vol. 43, no. 8, pp. 1212–1218, 2012. DOI: 10.1016/j.compositesa.2012.03.015.
  • J. Yang, Z. Zhang, K. Friedrich, and A.K. Schlarb, Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes, Macromol. Rapid Commun., vol. 28, no. 8, pp. 955–961, 2007. DOI: 10.1002/marc.200600866.
  • Y. Jia, K. Peng, X.L. Gong, and Z. Zhang, Creep and recovery of polypropylene/carbon nanotube composites, Int. J. Plast., vol. 27, no. 8, pp. 1239–1251, 2011. DOI: 10.1016/j.ijplas.2011.02.004.
  • Y. Pan, G.J. Weng, S.A. Meguid, W.S. Bao, Z.H. Zhu, and A.M.S. Hamouda, Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites, Mech. Mater., vol. 58, pp. 1–11, 2013. DOI: 10.1016/j.mechmat.2012.10.015.
  • K. Li, X.L. Gao, and A.K. Roy, Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites, Mech. Adv. Mater. Struct., vol. 13, no. 4, pp. 317–328, 2006. DOI: 10.1080/15376490600583931.
  • M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, and R. Ansari, Creep performance of CNT polymer nanocomposites – an emphasis on viscoelastic interphase and CNT agglomeration, Compos. B: Eng., vol. 168, pp. 274–281, 2019. DOI: 10.1016/j.compositesb.2018.12.093.
  • R. Ansari and M.K. Hassanzadeh-Aghdam, Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites, Int. J. Mech. Sci., vol. 115–116, pp. 45–55, 2016. DOI: 10.1016/j.ijmecsci.2016.06.005.
  • A.R. Shajari, R. Ghajar, and M.M. Shokrieh, Multiscale modeling of the viscoelastic properties of CNT/polymer nanocomposites, using complex and time-dependent homogenizations, Comput. Mater. Sci., vol. 142, pp. 395–409, 2018. DOI: 10.1016/j.commatsci.2017.10.006.
  • R. Christensen, 2012. Theory of Viscoelasticity: An Introduction, Elsevier, United Kingdom.
  • R.A. Schapery, Viscoelastic behavior and analysis of composite materials, Mech. Compos. Mater., vol. 2, pp. 85–169. 1974.
  • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical recipes, Cambridge University Press, 1989.
  • W.N. Findley and F.A. Davis, 2013. Creep and Relaxation of Non-Linear Viscoelastic Materials, Courier corporation, United States.
  • H.F. Brinson and L.C. Brinson, Polymer engineering science and viscoelasticity, An Introduction, New York, pp. 99–157, 2008.
  • T. Tang and S.D. Felicelli, Computational evaluation of effective stress relaxation behavior of polymer composites, Int. J. Eng. Sci., vol. 90, pp. 76–85, 2015. DOI: 10.1016/j.ijengsci.2015.02.003.
  • A. Naik, N. Abolfathi, G. Karami, and M. Ziejewski, Micromechanical viscoelastic characterization of fibrous composites, J. Compos. Mater., vol. 42, no. 12, pp. 1179–1204, 2008. DOI: 10.1177/0021998308091221.
  • M.J. Mahmoodi and M. Vakilifard, CNT-volume-fraction-dependent aggregation and waviness considerations in viscoelasticity-induced damping characterization of percolated-CNT reinforced nanocomposites, Compos. B: Eng., vol. 172, pp. 416–435, 2019. DOI: 10.1016/j.compositesb.2019.05.071.
  • Z. Shokrieh, and M.M. Shokrieh, A new model to simulate the creep behavior of graphene/epoxy nanocomposites, Polym. Test., vol. 75, pp. 321–326, 2019. DOI: 10.1016/j.polymertesting.2019.02.032.
  • M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano., vol. 3, no. 12, pp. 3884–3890, 2009. DOI: 10.1021/nn9010472.
  • S. Boutaleb, F. Zaïri, A. Mesbah, M. Naït-Abdelaziz, J.M. Gloaguen, T. Boukharouba, and J.M. Lefebvre, Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites, Int. J. Solids Struct., vol. 46, no. 7–8, pp. 1716–1726, 2009. DOI: 10.1016/j.ijsolstr.2008.12.011.
  • J.S. Snipes, C.T. Robinson, and S.C. Baxter, Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites, J. Compos. Mater., vol. 45, no. 24, pp. 2537–2546, 2011. DOI: 10.1177/0021998311401104.
  • H. Deng, Y. Liu, D. Gai, D.A. Dikin, K.W. Putz, W. Chen, L.C. Brinson, C. Burkhart, M. Poldneff, B. Jiang, and G.J. Papakonstantopoulos, Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites, Compos. Sci. Technol., vol. 72, no. 14, pp. 1725–1732, 2012. DOI: 10.1016/j.compscitech.2012.03.020.
  • R.D. Peng, H.W. Zhou, H.W. Wang, and L. Mishnaevsky Jr, Modeling of nano-reinforced polymer composites: microstructure effect on Young’s modulus, Comput. Mater. Sci., vol. 60, pp. 19–31, 2012. DOI: 10.1016/j.commatsci.2012.03.010.
  • H. Asadian and K. Shelesh‐Nezhad, Simulation of dynamic mechanical and viscoelastic behavior in polymer/clay nanocomposites, Polym. Compos., vol. 41, no. 3, pp. 817–823, 2020. DOI: 10.1002/pc.25412.
  • A. Martone, G. Faiella, V. Antonucci, M. Giordano, and M. Zarrelli, The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix, Compos. Sci. Technol., vol. 71, no. 8, pp. 1117–1123, 2011. DOI: 10.1016/j.compscitech.2011.04.002.
  • H. Hu, L. Onyebueke, and A. Abatan, Characterizing and modeling mechanical properties of nanocomposites-review and evaluation, JMMCE, vol. 09, no. 04, pp. 275–319, 2010. DOI: 10.4236/jmmce.2010.94022.
  • P. Suquet, Elements of homogenization for inelastic solid mechanics, Homogenization Tech. Compos. Media, vol. 272, pp. 194–275. 1987.
  • Zhaogui Wang, 2016. Numerical determination of elastic and viscoelastic properties of aligned continuous and discontinuous fiber reinforced composites, Master’s Thesis, Baylor University.
  • D.L. Shi, X.Q. Feng, Y.Y. Huang, K.C. Hwang, and H. Gao, The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, J. Eng. Mater. Technol., vol. 126, no. 3, pp. 250–257, 2004. DOI: 10.1115/1.1751182.
  • F.T. Fisher, R.D. Bradshaw, and L.C. Brinson, Fiber waviness in nanotube-reinforced polymer composites—I: modulus predictions using effective nanotube properties, Compos. Sci. Technol., vol. 63, no. 11, pp. 1689–1703, 2003. DOI: 10.1016/S0266-3538(03)00069-1.
  • T. Ogasawara, Y. Ishida, T. Ishikawa, and R. Yokota, Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites, Compos. A: Appl. Sci. Manuf., vol. 35, no. 1, pp. 67–74, 2004. DOI: 10.1016/j.compositesa.2003.09.003.
  • T. Zhou, J.W. Zha, Y. Hou, D. Wang, J. Zhao, and Z.M. Dang, Surface-functionalized MWNTs with emeraldine base: preparation and improving dielectric properties of polymer nanocomposites, ACS Appl. Mater Interf., vol. 3, no. 12, pp. 4557–4560, 2011. DOI: 10.1021/am201454e.
  • D.C. Hammerand, G.D. Seidel, and D.C. Lagoudas, Computational micromechanics of clustering and interphase effects in carbon nanotube composites, Mech. Adv. Mater. Struct., vol. 14, no. 4, pp. 277–294, 2007. DOI: 10.1080/15376490600817370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.