57
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Effects of transverse normal strain on the deformation of laminated and sandwich arches under the action of concentrated force

ORCID Icon, ORCID Icon &
Received 03 May 2023, Accepted 18 Jun 2023, Published online: 02 Jul 2023

References

  • L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Apud Marcum-Michaelem Bousquet and Socios., vol. 24, pp. 1–322, 1744. DOI: 10.5479/sil.318525.39088000877480.
  • J. Bernoulli, Curvatura laminae-elasticae, Acta Eruditorum Lipsiae., vol. 34, pp. 262–276, 1694.
  • S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philos, Mag. Series 1., vol. 41, no. 245, pp. 744–746, 1921. DOI: 10.1080/14786442108636264.
  • J. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • M. Qatu, Theories and analyses of thin and moderately thick laminated composite curved beams, Int. J. Solids Struct., vol. 30, no. 20, pp. 2743–2756, 1993. DOI: 10.1016/0020-7683(93)90152-W.
  • R. Shenoi, and W. Wang, Through-thickness stresses in curved composite laminates and sandwich beams, Compos. Sci. Technol., vol. 61, no. 11, pp. 1501–1512, 2001. DOI: 10.1016/S0266-3538(01)00035-5.
  • H. Matsunaga, Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading, Compos. Struct., vol. 60, no. 3, pp. 345–358, 2003. DOI: 10.1016/S0263-8223(02)00340-9.
  • A.S. Sayyad, and Y.M. Ghugal, Effect of transverse shear and transverse normal strain on bending analysis of cross-ply laminated beams, Int. J. Appl. Math and Mech., vol. 7, no. 12, pp. 85–118, 2011.
  • A. Luu, N. Kim, and J. Lee, Bending and buckling of general laminated curved beams using NURBS-based isogeometric analysis, Eur. J. Mech. A Solids., vol. 54, pp. 218–231, 2015. DOI: 10.1016/j.euromechsol.2015.07.006.
  • H. Qian, D. Zhou, W. Liu, H. Fang, and W. Lu, Elasticity solutions of simply supported laminated cylindrical arches subjected to thermo-loads, Compos. Struct., vol. 131, pp. 273–281, 2015. DOI: 10.1016/j.compstruct.2015.04.052.
  • H. Kurtaran, Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method, Compos. Struct., vol. 131, pp. 821–831, 2015. DOI: 10.1016/j.compstruct.2015.06.024.
  • L. Galuppi, and G. Royer-Carfagni, Shear coupling effects of the core in curved sandwich beams, Compos. Part B-Eng., vol. 76, pp. 320–331, 2015. DOI: 10.1016/j.compositesb.2015.01.045.
  • D. Shao, S. Hu, Q. Wang, and F. Pang, A unified analysis for the transient response of composite laminated curved beams with arbitrary lamination schemes and general boundary restraints, Compos. Struct., vol. 154, pp. 507–526, 2016. DOI: 10.1016/j.compstruct.2016.07.070.
  • A.S. Sayyad, and Y.M. Ghugal, A sinusoidal beam theory for functionally graded sandwich curved beams, Compos. Struct., vol. 226, pp. 111246, 2019. DOI: 10.1016/j.compstruct.2019.111246.
  • F. Tornabene, N. Fantuzzi, and M. Bacciocchi, Refined shear deformation theories for laminated composite arches and beams with variable thickness: atural frequency analysis, Eng. Anal. Bound., vol. 100, pp. 24–47, 2019. DOI: 10.1016/j.enganabound.2017.07.029.
  • A. Arikoglu, and A. Ozturk, A novel approach for in-plane vibration and damping analysis of arbitrary curved laminated composite and sandwich beams, Compos. Struct., vol. 253, pp. 112781, 2020. DOI: 10.1016/j.compstruct.2020.112781.
  • M. Yasin, H. Khalid, and M. Beg, Exact solution considering layerwise mechanics for laminated composite and sandwich curved beams of deep curvatures, Compos. Struct., vol. 244, pp. 112258, 2020. DOI: 10.1016/j.compstruct.2020.112258.
  • S. Khodabakhshpour-Bariki, R. Jafari-Talookolaei, M. Attar, and A. Eyvazian, Free vibration analysis of composite curved beams with stepped cross-section, Structures. vol. 33, pp. 4828–4842, 2021. DOI: 10.1016/j.istruc.2021.07.041.
  • V.M. Mahajan, and A. Sharma, Evaluation of static responses for layered composite arches, Curved Layer. Struct., vol. 10, no. 1, pp. 20220185, 2023. DOI: 10.1515/cls-2022-0185.
  • V.M. Mahajan, and A. Sharma, Evaluation of static and dynamic responses considering thickness stretching effect for layered composite and sandwich arches using exponential shear and normal deformation theory, Forces in Mechanics., vol. 12, pp. 100204, 2023. DOI: 10.1016/j.finmec.2023.100204.
  • A.M. Zenkour, Transverse shear and normal deformation theory for bending analysis of laminated and sandwich elastic beams, Mech. Adv. Mater. Struct., vol. 6, no. 3, pp. 267–283, 1999. DOI: 10.1080/107594199305566.
  • A.M. Zenkour, and N.A. Alghamdi, Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads, Mech, Adv. Mater. Struct., vol. 17, no. 6, pp. 419–432, 2010. DOI: 10.1080/15376494.2010.483323.
  • A. Fereidoon, M. Andalib, and H. Hemmatian, Bending analysis of curved sandwich beams with functionally graded core, Mech. Adv. Mater. Struct., vol. 22, no. 7, pp. 564–577, 2015. DOI: 10.1080/15376494.2013.828815.
  • H.D. Chalak, A. Chakrabarti, A.H. Sheikh, and M.A. Iqbal, Stability analysis of laminated soft core sandwich plate using higher order zig-zag plate theory, Mech. Adv. Mater. Struct., vol. 22, no. 11, pp. 897–907, 2015. DOI: 10.1080/15376494.2013.874061.
  • J.K. Nath, and T. Das, Static and free vibration analysis of multilayered functionally graded shells and plates using an efficient zigzag theory, Mech. Adv. Mater. Struct., vol. 26, no. 9, pp. 770–788, 2019. DOI: 10.1080/15376494.2017.1410915.
  • A.S. Sayyad, and Y.M. Ghugal, Modeling and analysis of functionally graded sandwich beams: A review, Mech. Adv. Mater. Struct., vol. 26, no. 21, pp. 1776–1795, 2019. DOI: 10.1080/15376494.2018.1447178.
  • R. Xiaohui, W. Zhen, and J. Bin, A refined sinusoidal theory for laminated composite and sandwich plates, Mech. Adv. Mater. Struct., vol. 27, no. 23, pp. 2013–2025, 2020. DOI: 10.1080/15376494.2018.1538469.
  • W. Zhen, C. Yang, H. Zhang, and X. Zheng, Stability of laminated composite and sandwich beams by a Reddy-type higher-order zig-zag theory, Mech. Adv. Mater. Struct., vol. 26, no. 19, pp. 1622–1635, 2019. DOI: 10.1080/15376494.2018.1444228.
  • M. Lezgy-Nazargah, A finite element model for static analysis of curved thin-walled beams based on the concept of equivalent layered composite cross section, Mech. Adv. Mater. Struct., vol. 29, no. 7, pp. 1020–1033, 2022. DOI: 10.1080/15376494.2020.1804649.
  • B. Huang, S. Ren, G. Zhao, and S. Zhang, Continuous interlaminar shear stress analysis of laminated FG-CNTRC beams based on an extended high-order layerwise model, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5006–5025, 2022. DOI: 10.1080/15376494.2021.1945713.
  • E. Carrera, A study of transverse normal stress effect on vibration of multilayered plates and shells, J. Sound Vib., vol. 225, no. 5, pp. 803–829, 1999. DOI: 10.1006/jsvi.1999.2271.
  • E. Carrera, Theories and finite elements for multilayered anisotropic, composite plates and shells, ARCO., vol. 9, no. 2, pp. 87–140, 2002. DOI: 10.1007/BF02736649.
  • E. Carrera, Theories and finite elements for multilayered anisotropic, composite plates and shells: A unified compact formulation with numerical assessment and benchmarking, ARCO., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • E. Carrera, Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates, AIAA J, vol. 43, no. 10, pp. 2232–2242, 2005. DOI: 10.2514/1.11230.
  • E. Carrera, Single-Layer vs multilayer plate modelings on the basis of Reissner’s mixed theorem, AIAA J, vol. 38, no. 2, pp. 342–352, 2000. DOI: 10.2514/2.962.
  • E. Carrera, A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Compos. Struct., vol. 48, no. 4, pp. 245–260, 2000. DOI: 10.1016/S0263-8223(99)00112-9.
  • E. Carrera, On the use of transverse shear stress homogeneous and non-homogeneous conditions in third-order orthotropic plate theory, Compos. Struct., vol. 77, no. 3, pp. 341–352, 2007. DOI: 10.1016/j.compstruct.2005.07.010.
  • E. Carrera, and A. Ciuffreda, Bending of composites and sandwich plates subjected to localized lateral loadings: A comparison of various theories, Compos. Struct., vol. 68, no. 2, pp. 185–202, 2005. DOI: 10.1016/j.compstruct.2004.03.013.
  • A.J.M. Ferreira, E. Carrera, M. Cinefra, and A.M. Zenkour, A radial basis functions solution for the analysis of laminated doubly-curved shells by a Reissner-mixed variational theorem, Mech. Adv. Mater. Struct., vol. 23, no. 9, pp. 1068–1079, 2016. DOI: 10.1080/15376494.2015.1121557.
  • M.D. Demirbas, U. Caliskan, X. Xu, and M. Filippi, Evaluation of the bending response of compact and thin-walled FG beams with CUF, Mech. Adv. Mater. Struct., vol. 28, no. 17, pp. 1755–1764, 2021. DOI: 10.1080/15376494.2019.1704951.
  • P.V. Avhad, and A.S. Sayyad, On the deformation of laminated composite and sandwich curved beams, Curved Layer. Struct., vol. 9, no. 1, pp. 1–12, 2022. DOI: 10.1515/cls-2022-0001.
  • A.S. Sayyad, and Y.M. Ghugal, Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of laminated composite and sandwich beams, J. Braz. Soc. Mech., vol. 40, no. 6, pp. 1–16, 2018. DOI: 10.1007/s40430-018-1222-5.
  • T. Kant, S.S. Pendhari, and Y.M. Desai, On accurate stress analysis of composite and sandwich narrow beams, Int. J. Comput. Methods Eng. Sci. Mech., vol. 8, no. 3, pp. 165–177, 2007. DOI: 10.1080/15502280701252834.
  • T.P. Vo, and H.T. Thai, Static behavior of composite beams using various refined shear deformation theories, Compos. Struct., vol. 94, no. 8, pp. 2513–2522, 2012. DOI: 10.1016/j.compstruct.2012.02.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.