181
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Analytic modeling and comprehensive transverse deflection analysis of elastically restrained piezoelectric actuators with silicone layer

ORCID Icon, ORCID Icon & ORCID Icon
Received 29 Apr 2023, Accepted 22 Jun 2023, Published online: 05 Jul 2023

References

  • M.Z. Yıldız, and H. Dereshgi, Design and analysis of PZT micropumps for biomedical applications: glaucoma treatment, J. Eng. Res., vol. 7, pp. 226–241, 2019.
  • P. Dhananchezhiyan, and S.S. Hiremath, Improving the performance of micro pumps by reduction of flow pulsation for drug delivery application, Adv. Mater. Process. Technol., vol. 4, no. 1, pp. 24–38, 2018. DOI: 10.1080/2374068X.2017.1367987.
  • H. Asadi Dereshgi, and M.Z. Yildiz, Numerical study of novel MEMS-based valveless piezoelectric micropumps in the range of low voltages and frequencies, in 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), IEEE, 2019. pp. 1–4. DOI: 10.1109/EBBT.2019.8741629.
  • S. Mohith, P.N. Karanth, and S.M. Kulkarni, Recent trends in mechanical micropumps and their applications: a review, Mechatronics, vol. 60, pp. 34–55, 2019. DOI: 10.1016/j.mechatronics.2019.04.009.
  • Q. Yan, Y. Yin, W. Sun, and J. Fu, Advances in valveless piezoelectric pumps, Appl. Sci., vol. 11, no. 15, pp. 7061, 2021. DOI: 10.3390/app11157061.
  • K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, and W. Boda, Design and test of a high-performance piezoelectric micropump for drug delivery, Sens. Actuators A Phys., vol. 121, no. 1, pp. 156–161, 2005. DOI: 10.1016/j.sna.2004.12.002.
  • S. Revathi, and R. Padmanabhan, Study of the effect on flow rate for planar type polymer-based diaphragm piezoelectric actuated valveless micropump for insulin delivery, Adv. Mater. Process. Technol., vol. 2, no. 1, pp. 31–43, 2016. DOI: 10.1080/2374068X.2016.1147766.
  • S.G. Bhokare, and B. Behera, Motion improvised miniaturized dual focus lens module based on piezoelectric actuator for the medical applications, Ferroelectrics, vol. 598, no. 1, pp. 68–78, 2022. DOI: 10.1080/00150193.2022.2102823.
  • V. Hassani, and T. Tjahjowidodo, A hysteresis model for a stacked-type piezoelectric actuator, Mech. Adv. Mater. Struct., vol. 24, no. 1, pp. 73–87, 2017. DOI: 10.1080/15376494.2015.1107668.
  • X. Liu, X. Li, M. Wang, S. Cao, X. Wang, and G. Liu, A high-performance piezoelectric micropump with multi-chamber in series, Appl. Sci., vol. 12, no. 9, pp. 4483, 2022. DOI: 10.3390/app12094483.
  • H. Asadi Dereshgi, H. Dal, and M.Z. Yildiz, Piezoelectric micropumps: state of the art review, Microsyst. Technol., vol. 27, no. 12, pp. 4127–4155, 2021. DOI: 10.1007/s00542-020-05190-0.
  • J. Wang, Y. Liu, Y. Shen, S. Chen, and Z. Yang, A resonant piezoelectric diaphragm pump transferring gas with compact structure, Micromachines (Basel), vol. 7, no. 12, pp. 219, 2016. DOI: 10.3390/mi7120219.
  • H. Jawaid, W.A. Qureshi, R.A. Pasha, and R.A. Malik, Characterization and mathematical modelling of geometric effects on piezoelectric actuators, Integr. Ferroelectr., vol. 201, no. 1, pp. 201–217, 2019. DOI: 10.1080/10584587.2019.1668704.
  • L. Zhang, X. Xu, Q. Han, Z. Qin, and F. Chu, Energy harvesting of beam vibration based on piezoelectric stacks, Smart Mater. Struct., vol. 28, no. 12, pp. 125020, 2019. DOI: 10.1088/1361-665X/ab4e09.
  • L. Zhang, X. Tang, Z. Qin, and F. Chu, Vibro-impact energy harvester for low frequency vibration enhanced by acoustic black hole, Appl. Phys. Lett., vol. 121, no. 1, pp. 013902, 2022. DOI: 10.1063/5.0089382.
  • L. Zhang, L. Qin, Z. Qin, and F. Chu, Energy harvesting from gravity-induced deformation of rotating shaft for long-term monitoring of rotating machinery, Smart Mater. Struct., vol. 31, no. 12, pp. 125008, 2022. DOI: 10.1088/1361-665X/ac9e2d.
  • G. Liu, C. Shen, Z. Yang, X. Cai, and H. Zhang, A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system, Sens. Actuators A Phys., vol. 163, no. 1, pp. 291–296, 2010. DOI: 10.1016/j.sna.2010.06.030.
  • D.-A. Wang, C.-H. Cheng, Y.-H. Hsieh, and Z.-X. Zhang, Analysis of an annular PZT actuator for a droplet ejector, Sens. Actuators A Phys., vol. 137, no. 2, pp. 330–337, 2007. DOI: 10.1016/j.sna.2007.03.020.
  • C.J. Morris, F.K. Forster, and C.J. Morris, Optimization of a circular piezoelectric bimorph for a micropump driver, J. Micromech. Microeng., vol. 10, no. 3, pp. 459–465, 2000. DOI: 10.1088/0960-1317/10/3/323.
  • P. Muralt, A. Kholkin, M. Kohli, and T. Maeder, Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions, Sens. Actuators A Phys., vol. 53, no. 1–3, pp. 398–404, 1996. DOI: 10.1016/0924-4247(96)01139-9.
  • K. Srinivasa Rao, M. Hamza, P. Ashok Kumar, and K. Girija Sravani, Design and optimization of MEMS based piezoelectric actuator for drug delivery systems, Microsyst. Technol., vol. 26, no. 5, pp. 1671–1679, 2020. DOI: 10.1007/s00542-019-04712-9.
  • H. Asadi Dereshgi, M.Z. Yildiz, and H. Dal, Displacement analysis of a piezoelectric based multi-layered micropump diaphragm, Iran J. Sci. Technol. Trans. Mech. Eng., vol. 45, no. 1, pp. 77–90, 2021. DOI: 10.1007/s40997-020-00362-9.
  • G.-H. Feng, and E.S. Kim, Micropump based on PZT unimorph and one-way parylene valves, J. Micromech. Microeng., vol. 14, no. 4, pp. 429–435, 2004. DOI: 10.1088/0960-1317/14/4/001.
  • H. Asadi Dereshgi, H. Dal, and M.E. Sayan, Analytical analysis of a circular unimorph piezoelectric actuator in the range of low voltages and pressures, Microsyst. Technol., vol. 26, no. 8, pp. 2453–2464, 2020. DOI: 10.1007/s00542-020-04786-w.
  • A.A. Jandaghian, A.A. Jafari, and O. Rahmani, Exact solution for transient bending of a circular plate integrated with piezoelectric layers, Appl. Math. Model., vol. 37, no. 12–13, pp. 7154–7163, 2013. DOI: 10.1016/j.apm.2013.02.007.
  • Q. Cui, C. Liu, and X. William Zha, Design and simulation of a piezoelectrically actuated micropump for the drug delivery system, in 2006 IEEE International Conference on Automation Science and Engineering, IEEE, 2006. pp. 45–50. DOI: 10.1109/COASE.2006.326853.
  • B. Wang, X. Chu, E. Li, and L. Li, Simulations and analysis of a piezoelectric micropump, Ultrasonics, vol. 44, pp. e643–e646, 2006. DOI: 10.1016/j.ultras.2006.05.018.
  • Q. Cui, C. Liu, and X.F. Zha, Study on a piezoelectric micropump for the controlled drug delivery system, Microfluid. Nanofluid., vol. 3, no. 4, pp. 377–390, 2007. DOI: 10.1007/s10404-006-0137-0.
  • H. Asadi Dereshgi, M.Z. Yildiz, and N. Parlak, Performance comparison of novel single and Bi-Diaphragm PZT based valveless micropumps, JAFM, vol. 13, no. 2, pp. 401–412, 2020. DOI: 10.29252/jafm.13.02.30347.
  • K. Brooks, D. Damjanovic, A. Kholkin, I. Reaney, N. Setter, P. Luginbuhl, G.-A. Racine, N. F. de Rooij, and A. Saaman, PZT films for micro-pumps, Integr. Ferroelectr., vol. 8, no. 1–2, pp. 13–23, 1995. DOI: 10.1080/10584589508012296.
  • A. Singh, P.V. Katariya, and N. Karathanasopoulos, Composite sandwich plates with piezoelectric layers: structural design, modal attributes and electric potential, Mech. Adv. Mater. Struct., pp. 1–15, 2023. DOI: 10.1080/15376494.2023.2198530.
  • X. Li, H. Du, L. Xu, Y. Hu, and L. Xu, Optimization of a circular thin-film piezoelectric actuator lying on a clamped multilayered elastic plate, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 7, pp. 1469–1475, 2009. DOI: 10.1109/TUFFC.2009.1202.
  • M. Herz, D. Horsch, G. Wachutka, T.C. Lueth, and M. Richter, Design of ideal circular bending actuators for high performance micropumps, Sens. Actuators A Phys., vol. 163, no. 1, pp. 231–239, 2010. DOI: 10.1016/j.sna.2010.05.018.
  • S. Mohammadi, and M. Abdalbeigi, Analytical optimization of piezoelectric circular diaphragm generator, Adv. Mater. Sci. Eng., vol. 2013, pp. 1–10, 2013. DOI: 10.1155/2013/620231.
  • H.S. Tzou, and Y.H. Zhou, Dynamics and control of non-linear circular plates with piezoelectric actuators, J. Sound Vib., vol. 188, no. 2, pp. 189–207, 1995. DOI: 10.1006/jsvi.1995.0586.
  • J. Johari, and B.Y. Majlis, Analysis of a bilaminar circular piezoelectric actuator for micropumps, in 2006 IEEE International Conference on Semiconductor Electronics, IEEE, 2006. pp. 106–111. DOI: 10.1109/SMELEC.2006.381029.
  • Q. Cui, C. Liu, X.F. Zha, Modeling and numerical analysis of a circular piezoelectric actuator for valveless micropumps, J. Intell. Mater. Syst. Struct., vol. 19, no. 10, pp. 1195–1205, 2008. DOI: 10.1177/1045389X07084204.
  • G. Mieczkowski, A. Borawski, and D. Szpica, Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors, vol. 20, no. 1, pp. 222, 2019. DOI: 10.3390/s20010222.
  • X. He, W. Xu, N. Lin, B.B. Uzoejinwa, and Z. Deng, Dynamics modeling and vibration analysis of a piezoelectric diaphragm applied in valveless micropump, J. Sound Vib., vol. 405, pp. 133–143, 2017. DOI: 10.1016/j.jsv.2017.05.025.
  • M. Yakut Ali, C. Kuang, J. Khan, and G. Wang, A dynamic piezoelectric micropumping phenomenon, Microfluid. Nanofluid., vol. 9, no. 2–3, pp. 385–396, 2010. DOI: 10.1007/s10404-009-0556-9.
  • S. Kaviani, M. Bahrami, A.M. Esfahani, and B. Parsi, A modeling and vibration analysis of a piezoelectric micro-pump diaphragm, C. R. Méc., vol. 342, no. 12, pp. 692–699, 2014. DOI: 10.1016/j.crme.2014.06.005.
  • Y. Zhang, X. Wang, S. Liu, and Q. Pan, Design of a piezoelectric pump driven by inertial force of vibrator supported by a slotted beam, Machines, vol. 10, no. 6, pp. 460, 2022. DOI: 10.3390/machines10060460.
  • S. Revathi, N. Padmapriya, and R. Padmanabhan, Analytical modelling and numerical simulation of 0–3 PZT/PVDF composite actuated micropump, Adv. Mater. Process. Technol., vol. 7, no. 1, pp. 85–108, 2021. DOI: 10.1080/2374068X.2020.1754719.
  • A. Ali, R.A. Pasha, H. Elahi, M.A. Sheeraz, S. Bibi, Z.U. Hassan, M. Eugeni, and P. Gaudenzi, Investigation of deformation in bimorph piezoelectric actuator: analytical, numerical and experimental approach, Integr. Ferroelectr., vol. 201, no. 1, pp. 94–109, 2019. DOI: 10.1080/10584587.2019.1668694.
  • S. Revathi, N. Padmapriya, and R. Padmanabhan, A design analysis of piezoelectric-polymer composite-based valveless micropump, Int. J. Model. Simul., vol. 39, no. 2, pp. 110–124, 2019. DOI: 10.1080/02286203.2018.1482521.
  • S. Dong, K. Uchino, L. Li, and D. Viehland, Analytical solutions for the transverse deflection of a piezoelectric circular axisymmetric unimorph actuator, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 54, no. 6, pp. 1240–1249, 2007. DOI: 10.1109/TUFFC.2007.377.
  • W. Gao, Y. Liu, Z. Qin, and F. Chu, Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment, Int. J. Appl. Mech., vol. 14, no. 07, pp. 2250071. 2022. DOI: 10.1142/S1758825122500715.
  • Y. Hu, X. Liang, and W. Wang, A theoretical solution of resonant circular diaphragm-type piezoactuators with added mass loads, Sens. Actuators A Phys., vol. 258, pp. 74–87, 2017. DOI: 10.1016/j.sna.2017.02.029.
  • Z.J. Wu, and C. Han, A strong solution for a generalized plane strain unsymmetrical piezoelectric bi-layer laminates, Mech. Adv. Mater. Struct., vol. 24, no. 2, pp. 122–130, 2017. DOI: 10.1080/15376494.2015.1107671.
  • J. Zhang, Q. Zhao, X. Wang, S. Ullah, D. Zhao, Ö. Civalek, C. Xue, and W. Qi, New exact analytical thermal buckling solutions of composite thin plates with all edges rotationally-restrained, Mech. Adv. Mater. Struct., pp. 1–13, 2023. DOI: 10.1080/15376494.2023.2178041.
  • P. Ribeiro, A.M. Antunes, H. Akhavan, and J.D. Rodrigues, Non-linear forced vibrations of variable stiffness plates on elastic supports, Mech. Adv. Mater. Struct., pp. 1–18, 2022. DOI: 10.1080/15376494.2022.2092792.
  • K.M. Liew, Y. Xiang, and S. Kitipornchai, Vibration of laminated plates having elastic edge flexibilities, J. Eng. Mech., vol. 123, no. 10, pp. 1012–1019, 1997. DOI: 10.1061/(ASCE)0733-9399(1997)123:10(1012).
  • A.K. Sharma, N. Das Mittal, and A. Sharma, Free vibration analysis of moderately thick antisymmetric angle-ply laminated rectangular plates with elastic edge constraints, Mech. Adv. Mater. Struct., vol. 21, no. 5, pp. 341–348, 2014. DOI: 10.1080/15376494.2012.680678.
  • Y. Zhang, and D. Shi, An exact Fourier series method for vibration analysis of elastically connected laminated composite double-beam system with elastic constraints, Mech. Adv. Mater. Struct., vol. 28, no. 23, pp. 2440–2457, 2021. DOI: 10.1080/15376494.2020.1741750.
  • N. Wattanasakulpong, and Q. Mao, Stability and vibration analyses of carbon nanotube-reinforced composite beams with elastic boundary conditions: Chebyshev collocation method, Mech. Adv. Mater. Struct., vol. 24, no. 3, pp. 260–270, 2017. DOI: 10.1080/15376494.2016.1142020.
  • J. Fan, J. Huang, J. Ding, and J. Zhang, Free vibration of functionally graded carbon nanotube-reinforced conical panels integrated with piezoelectric layers subjected to elastically restrained boundary conditions, Adv. Mech. Eng., vol. 9, no. 7, pp. 168781401771181, 2017. DOI: 10.1177/1687814017711811.
  • M.Ö. Yayli, A compact analytical method for vibration of micro-sized beams with different boundary conditions, Mech. Adv. Mater. Struct., vol. 24, no. 6, pp. 496–508, 2017. DOI: 10.1080/15376494.2016.1143989.
  • J. Marzbanrad, M. Boreiry, and G.R. Shaghaghi, Surface effects on vibration analysis of elastically restrained piezoelectric nanobeams subjected to magneto-thermo-electrical field embedded in elastic medium, Appl. Phys. A, vol. 123, no. 4, pp. 246, 2017. DOI: 10.1007/s00339-017-0768-x.
  • C. Zhang, and Q. Wang, Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori–Tanaka scheme, Mech. Adv. Mater. Struct., vol. 26, no. 21, pp. 1821–1831, 2019. DOI: 10.1080/15376494.2018.1452318.
  • J. Guo, D. Shi, Q. Wang, F. Pang, and Q. Liang, A domain decomposition approach for static and dynamic analysis of composite laminated curved beam with general elastic restrains, Mech. Adv. Mater. Struct., vol. 26, no. 16, pp. 1390–1402, 2019. DOI: 10.1080/15376494.2018.1432810.
  • M. Arefi, and E.M.-R. Bidgoli, Electro-elastic displacement and stress analysis of the piezoelectric doubly curved shells resting on Winkler’s foundation subjected to applied voltage, Mech. Adv. Mater. Struct., vol. 26, no. 23, pp. 1981–1994, 2019. DOI: 10.1080/15376494.2018.1455937.
  • A. Alibeigloo, Three-dimensional exact solution for functionally graded rectangular plate with integrated surface piezoelectric layers resting on elastic foundation, Mech. Adv. Mater. Struct., vol. 17, no. 3, pp. 183–195, 2010. DOI: 10.1080/15376490903558002.
  • S.A.N. Prasad, Two-port electroacoustic model of a piezoelectric composite circular plate, Master’s Thesis, University of Florida, 2002.
  • S.A.N. Prasad, Q. Gallas, S. Horowitz, B. Homeijer, B.V. Sankar, L.N. Cattafesta, and M. Sheplak, Analytical electroacoustic model of a piezoelectric composite circular plate, AIAA J., vol. 44, no. 10, pp. 2311–2318, 2006. DOI: 10.2514/1.19855.
  • M. Deshpande, and L. Saggere, An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator, Sens. Actuators A Phys., vol. 136, no. 2, pp. 673–689, 2007. DOI: 10.1016/j.sna.2006.12.022.
  • S. Timoshenko, and S. Woinowsky-Krieger, Theory of Plates and Shells. McGraw-Hill, New York, 1959.
  • Y. Liu, Z. Qin, and F. Chu, Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells, Commun. Nonlinear Sci. Numer. Simul., vol. 107, pp. 106146, 2022. DOI: 10.1016/j.cnsns.2021.106146.
  • N.N. Rogacheva, The Theory of Piezoelectric Shells and Plates. CRC Press, Boca Raton, 1994. DOI: 10.1201/9781003068129.
  • S. Timoshenko, and J.N. Goodier, Theory of Elasticity. McGraw-Hill, New York, NY, 1990.
  • J.N. Reddy, Theory and Analysis of Elastic Plates and Shells. 2nd ed., CRC Press, London, 2006. DOI: 10.1201/9780849384165.
  • Y. Liu, Z. Qin, and F. Chu, Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads, Int. J. Mech. Sci., vol. 201, pp. 106474, 2021. DOI: 10.1016/j.ijmecsci.2021.106474.
  • W.L. Li, and M. Daniels, A Fourier series method for the vibrations of elastically restrained plates arbitrarily loaded with springs and masses, J. Sound Vib., vol. 252, no. 4, pp. 768–781, 2002. DOI: 10.1006/jsvi.2001.3990.
  • A.W. Leissa, Vibration of Plates, U.S. Government Printing Office, Washington, D.C., 1969.
  • C. Mo, R. Wright, W.S. Slaughter, and W.W. Clark, Behaviour of a unimorph circular piezoelectric actuator, Smart Mater. Struct., vol. 15, no. 4, pp. 1094–1102, 2006. DOI: 10.1088/0964-1726/15/4/023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.