118
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Broadband vibration attenuation study and wave propagation analysis of extended arrow tetragonal lattice structure

, , , , , , , & show all
Received 14 Mar 2023, Accepted 28 Jun 2023, Published online: 20 Jul 2023

References

  • X. Jiang, C. Shi, Z.L. Li, S.Q. Wang, Y. Wang, S. Yang , S.G. Louie , and X. Zhang, Direct observation of Klein tunneling in phononic crystals, Science, vol. 370, no. 6523, pp. 1447–1450, 2020. DOI: 10.1126/science.abe2011.
  • Q. Yang, T. Song, X.D. Wen, H.F. Zhu, Z.-H. Tan , L.-J. Liu , Z.-J. Liu , and X.-W. Sun, Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency, Phys. Lett., vol. 384, no. 35, pp. 126885, 2020. DOI: 10.1016/j.physleta.2020.126885.
  • E. Linzhongyang, Z.J. Wu, G.P. Zou, F. Li, C. Zhang, A. Sun, and Q. Du, Band-gap characteristics of elastic metamaterial plate with axial rod core by the finite element and spectral element hybrid method, Mech. Adv. Mater. Struct., vol. 29, no. 17, pp. 2405–2422, 2022. DOI: 10.1080/15376494.2020.1863531.
  • Hanbo Shao, Huan He, Cheng He, and Guoping Chen, Study on the band gap optimization and defect state of two-dimensional honeycomb phononic crystals, J. Mater. Res., vol. 35, no. 21, pp. 3021–3030, 2020. DOI: 10.1557/jmr.2020.247.
  • S. Dalela, P.S. Balaji, and D.P. Jena, A review on application of mechanical metamaterials for vibration control, Mech. Adv. Mater. Struct., vol. 29, no. 22, pp. 3237–3262, 2022. DOI: 10.1080/15376494.2021.1892244.
  • L.X. Zhao, and S.X. Zhou, Compact acoustic rainbow trapping in a bioinspired spiral array of graded locally resonant metamaterials, Sensors, vol. 19, no. 4, pp. 788, 2019. DOI: 10.3390/s19040788.
  • P. Gulia, and A. Gupta, Sound attenuation in triple panel using locally resonant sonic crystal and porous material, Appl. Acoust., vol. 156, pp. 113–119, 2019. DOI: 10.1016/j.apacoust.2019.07.012.
  • D.H. Qian, and Z.Y. Shi, Bandgap properties in simplified model of composite locally resonant phononic crystal plate, Phys. Lett., vol. 381, no. 40, pp. 3505–3513, 2017. DOI: 10.1016/j.physleta.2017.08.058.
  • P. Sheng, X.X. Zhang, Z. Liu, and C.T. Chan, Locally resonant sonic materials, Physica B, vol. 338, no. 1–4, pp. 201–205, 2003. DOI: 10.1016/S0921-4526(03)00487-3.
  • F.Y. Ma, Y.C. Xu, and J.H. Wu, Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials, Appl. Phys. Express, vol. 12, no. 7, pp. 074004, 2019. DOI: 10.7567/1882-0786/ab27dd.
  • F.Y. Ma, J.Y. Chen, and J.H. Wu, Three-dimensional acoustic sub-diffraction focusing by coiled metamaterials with strong absorption, J. Mater. Chem. C, vol. 7, no. 17, pp. 5131–5138, 2019. DOI: 10.1039/C9TC01243E.
  • Y.J. Chen, B. Wu, J. Li, S. Rudykh, and W.Q. Chen, Low-frequency tunable topological interface states in soft phononic crystal cylinders, Int. J. Mech. Sci., vol. 191, pp. 106098, 2021. DOI: 10.1016/j.ijmecsci.2020.106098.
  • A. Sugahara, H. Lee, S. Sakamoto, and S. Takeoka, Measurements of acoustic impedance of porous materials using a parametric loudspeaker with phononic crystals and phase-cancellation method, Appl. Acoust., vol. 152, pp. 54–62, 2019. DOI: 10.1016/j.apacoust.2019.03.019.
  • F. Taleb, and S. Darbari, Tunable locally resonant surface-acoustic-waveguiding behavior by acoustoelectric interaction in ZnO-based phononic crystal, Phys. Rev. Appl., vol. 11, pp. 024030, 2019.
  • B.Z. Xia, L.P. Li, J. Liu, and D.J. Yu, Acoustic metamaterial with fractal coiling up space for sound blocking in a deep subwavelength scale, J. Vib. Acoust-Trans. ASME, vol. 140, pp. 011011, 2018.
  • Z. Jia, Y.Y. Chen, and H.X. Yang, Designing phononic crystals with wide and robust band gaps, Phys. Rev. Appl., vol. 9, pp. 044021, 2018.
  • Z.N. Li, Y.Z. Wang, and Y.S. Wang, Three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial, Int. J. Non Linear Mech., vol. 125, pp. 103531, 2020. DOI: 10.1016/j.ijnonlinmec.2020.103531.
  • J.C. Guo, J.R. Li, and Z. Zhang, Interface design of low-frequency band gap characteristics in stepped hybrid phononic crystals, Appl. Acoust., vol. 182, pp. 108209, 2021. DOI: 10.1016/j.apacoust.2021.108209.
  • Y.L. Huang, L. Li, W.Q. Chen, and R. Bao, Tunable bandgaps in soft phononic plates with spring-mass-like resonators, Int. J. Mech. Sci., vol. 151, pp. 300–313, 2019. DOI: 10.1016/j.ijmecsci.2018.11.029.
  • S.W. Ning, F.Y. Yang, C.C. Luo, Z. Liu, and Z. Zhuang, Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation, Extreme Mech. Lett., vol. 35, pp. 100623, 2020. DOI: 10.1016/j.eml.2019.100623.
  • Y.G. Li, L. Zhu, and T.N. Chen, Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation, Ultrasonics, vol. 73, pp. 34–42, 2017. DOI: 10.1016/j.ultras.2016.08.019.
  • Q.B. Li, F. Meng, Y.F. Chen, Y.F. Li , and X. Huang, Topology optimization of photonic and phononic crystals and metamaterials: a review, Adv. Theory Simul., vol. 2, no. 7, pp. 1900017, 2019. DOI: 10.1002/adts.201900017.
  • S.Y. Zhang, D.J. Yan, Y.S. Wang, Y.F. Wang, and V. Laude, Wave propagation in one-dimensional fluid-saturated porous phononic crystals with partial-open pore interfaces, Int. J. Mech. Sci., vol. 195, pp. 106227, 2021. DOI: 10.1016/j.ijmecsci.2020.106227.
  • Y.L. Huang, Y. Huang, W.Q. Chen, and R. Bao, Flexible manipulation of topologically protected waves in one-dimensional soft periodic plates, Int. J. Mech. Sci., vol. 170, pp. 105348, 2020. DOI: 10.1016/j.ijmecsci.2019.105348.
  • H.B. Zhang, B.L. Liu, X.L. Zhang, Q. Wu, and X. Wang, Zone folding induced tunable topological interface states in one-dimensional phononic crystal plates, Phys. Lett., vol. 383, no. 23, pp. 2797–2801, 2019. DOI: 10.1016/j.physleta.2019.05.045.
  • X.P. Wang, H. Sun, T.C. Chen, and X. Wang, Enhanced acoustic localization in the two-dimensional phononic crystals with slit tube defect, Phys. Lett., vol. 383, no. 29, pp. 125918, 2019. DOI: 10.1016/j.physleta.2019.125918.
  • D. Psiachos, and M.M. Sigalas, Band-gap tuning in two-dimensional spatiotemporal phononic crystals, Phys. Rev. Appl., vol. 15, pp. 014022, 2021.
  • V.F. Dal Poggetto, and A.L. Serpa, Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method, Int. J. Mech. Sci., vol. 184, pp. 105841, 2020. DOI: 10.1016/j.ijmecsci.2020.105841.
  • W.B. Li, F. Meng, Y.F. Li, and X. Huang, Topological design of 3D phononic crystals for ultra-wide omnidirectional bandgaps, Struct. Multidisc. Optim., vol. 60, no. 6, pp. 2405–2415, 2019. DOI: 10.1007/s00158-019-02329-0.
  • D.L. Yu, Y.Z. Liu, H.G. Zhao, G. Wang, and J. Qiu, Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom, Phys. Rev. B, vol. 73, no. 6, pp. 064301, 2006. DOI: 10.1103/PhysRevB.73.064301.
  • D.L. Yu, Y.Z. Liu, G. Wang, H.G. Zhao, and J. Qiu, Flexural vibration band gaps in Timoshenko beams with locally resonant structures, J. Appl. Phys., vol. 100, no. 12, pp. 124901, 2006. DOI: 10.1063/1.2400803.
  • Y. Xiao, S.X. Wang, Y.Q. Li, and J.H. Wen, Closed-form bandgap design formulas for beam-type metastructures, Mech. Syst. Signal Process., vol. 159, pp. 107777, 2021. DOI: 10.1016/j.ymssp.2021.107777.
  • Y. Xiao, J.H. Wen, D.L. Yu, and X.S. Wen, Flexural wave propagation in beams with periodically attached vibration absorbers: band-gap behavior and band formation mechanisms, J. Sound Vib., vol. 332, no. 4, pp. 867–893, 2013. DOI: 10.1016/j.jsv.2012.09.035.
  • Z.Y. Wang, P. Zhang, and Y.Q. Zhang, Locally resonant band gaps in flexural vibrations of a Timoshenko beam with periodically attached multioscillators, Math. Probl. Eng., vol. 2013, pp. 1–10, 2013. DOI: 10.1155/2013/146975.
  • D.L. Yu, J.H. Wen, H.G. Zhao, Y.Z. Liu, and X.S. Wen, Flexural vibration band gap in a periodic fluid-conveying pipe system based on the Timoshenko beam theory, ASME J. Vib. Acoust., vol. 133, no. 1, pp. 014502, 2011.
  • D.L. Yu, C.Y. Du, H.J. Shen, J.W. Liu, and J.H. Wen, An analysis of structural-acoustic coupling band gaps in a fluid-filled periodic pipe, Chin. Phys. Lett., vol. 34, no. 7, pp. 076202, 2017. DOI: 10.1088/0256-307X/34/7/076202.
  • H.J. Shen, J.H. Wen, D.L. Yu, M. Asgari, and X.S. Wen, Control of sound and vibration of fluid-filled cylindrical shells via periodic design and active control, J. Sound Vib., vol. 332, no. 18, pp. 4193–4209, 2013. DOI: 10.1016/j.jsv.2013.03.007.
  • H.J. Shen, J.H. Wen, D.L. Yu, M. Asgari, and X.S. Wen, Stability of clamped-clamped periodic functionally graded material shells conveying fluid, J. Vib. Control., vol. 21, no. 15, pp. 3034–3046, 2015. DOI: 10.1177/1077546313520026.
  • Z.L. Wu, F.M. Li, and C.Z. Zhang, Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method, J. Sound Vib., vol. 421, pp. 246–260, 2018. DOI: 10.1016/j.jsv.2018.02.009.
  • J. Plisson, A. Pelat, F. Gautier, V.R. Garcia, and T. Bourdon, Experimental evidence of absolute bandgaps in phononic crystal pipes, Appl. Phys. Lett., vol. 116, no. 20, pp. 201902, 2020. DOI: 10.1063/5.0007532.
  • Y.H. Xiong, A.D. Xu, S.R. Wen, F. Li , and S.M. Hosseini, Optimization of vibration band-gap characteristics of a periodic elastic metamaterial plate, Mech. Adv. Mater. Struct., vol. 30, no. 15, pp. 3204–3214. 2023. DOI: 10.1080/15376494.2022.2070804.
  • F. Liang, and X.D. Yang, Wave properties and band gap analysis of deploying pipes conveying fluid with periodic varying parameters, Appl. Math. Model., vol. 77, pp. 522–538, 2020. DOI: 10.1016/j.apm.2019.07.064.
  • Y.Q. Liu, B.S. Wang, S.P. Yang, Y.Y. Liao, and T. Guo, Characteristics analysis of mechanical thermal coupling model of bearing rotor system of high-speed train, Appl. Math. Mech.-Engl. Ed., vol. 43, no. 9, pp. 1381–1398, 2022. DOI: 10.1007/s10483-022-2893-5.
  • H.Y. Yang, S.L. Cheng, X.F. Li, Q. Yan, B. Wang, Y.J. Xin, Y.T. Sun, Q. Ding, H. Yan, Y.J. Li, and Q.X. Zhao, Study on the bandgap and directional wave propagation mechanism of novel auxiliary semicircle rings lattices, Mater Today Commun., vol. 35, pp. 105680, 2023. DOI: 10.1016/j.mtcomm.2023.105680.
  • X.F. Li, S.L. Cheng, R. Wang, Q. Yan, B. Wang, Y.T. Sun, H. Yan, Q.X. Zhao, and Y.J. Xin, Design of novel two-dimensional single-phase chiral phononic crystal assembly structures and study of bandgap mechanism, Results Phys., vol. 48, pp. 106431, 2023. DOI: 10.1016/j.rinp.2023.106431.
  • H.Y. Yang, S.L. Cheng, X.F. Li, Q. Yan, B. Wang, Y.J. Xin, Y.T. Sun, Q. Ding, H. Yan, Y.J. Li, and Q.X. Zhao, Ultra-low-frequency multi-broadband and vibration suppression mechanism of innovative star-shaped hybrid metamaterials, Mater Design, vol. 230, pp. 111966, 2023. DOI: 10.1016/j.matdes.2023.111966.
  • X.F. Li, S.L. Cheng, H.Y. Yang, Q. Yan, B. Wang, Y.T. Sun, Q. Ding, H. Yan, H.G. Han, Q.X. Zhao, and Y.J. Xin, Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators, Physica A, vol. 615, pp. 128600, 2023. DOI: 10.1016/j.physa.2023.128600.
  • Y. Zhang, L. Wang, Q. Ding, H. Han, J. Xu, H. Yan, Y. Sun, Q. Yan, and H. Gao, Low-frequency property and vibration reduction design of chiral star-shaped compositive mechanical metamaterials, Mech. Adv. Mater. Struct., 2022. DOI: 10.1080/15376494.2022.2081751.
  • Q.F. Lu, C.C. Liu, Z.H. Qin, W. Ma, and F.M. Li, Vibration control and band gap tuning of finite periodic structure composed by active functionally graded metamaterial bars, Mech. Adv. Mater. Struct., vol. 30, no. 4, pp. 856–869, 2023. DOI: 10.1080/15376494.2022.2025633.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.