151
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Multi-objective parametric optimization of driver-based electromagnetic sheet metal forming of SS304 using AA6061-T6 driver

, , , , &
Received 14 May 2023, Accepted 06 Jul 2023, Published online: 30 Jul 2023

References

  • M. Kleiner, C. Beerwald, and W. Homberg, Analysis of process parameters and forming mechanisms within the electromagnetic forming process, CIRP Ann. Manuf. Technol., vol. 54, no. 1, pp. 225–228, 2005. DOI: 10.1016/S0007-8506(07)60089-4.
  • V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, and M. Kleiner, Electromagnetic forming – a review, J. Mater. Process. Technol., vol. 211, no. 5, pp. 787–829, 2011. DOI: 10.1016/j.jmatprotec.2010.12.012.
  • M.T. Nasri, F. Abbassi, F. Ahmad, W. Makhloufi, M. Ayadi, H. Mehboob, and H.S. Choi, Experimental and numerical investigation of sheet metal failure based on Johnson-Cook model and Erichsen test over a wide range of temperatures, Mech. Adv. Mater. Struct., vol. 30, no. 10, pp. 2087–2100, 2023. DOI: 10.1080/15376494.2022.2049934.
  • R. Selvam and S.S. Karibeeran, Optimisation of process parameters for electromagnetic forming of AA6101 tubes, ASME 2020 15th International Manufacturing Science and Engineering Conference, MSEC 2020, vol. 2. September 3, 2020. DOI: 10.1115/MSEC2020-8354.
  • L. Qiu, Y. Yu, Q. Xiong, C. Deng, Q. Cao, X. Han, and L. Li, Analysis of electromagnetic force and deformation behavior in electromagnetic tube expansion with concave coil based on finite element method, IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1–5, Art no. 0600705. 2018. DOI: 10.1109/TASC.2017.2789287.
  • X. Zhang, Q. Cao, X. Han, Q, Chen, Z. Lai, Q. Xiong, F. Deng, and L. Li, Application of triple-coil system for improving deformation depth of tube in electromagnetic forming, IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1–4, 2016. DOI: 10.1109/TASC.2016.2542482.
  • A.G. Mamalis, D.E. Manolakos, A.G. Kladas, and A.K. Koumoutsos, Electromagnetic forming tools and processing conditions: numerical simulation, Mater. Manuf. Process., vol. 21, no. 4, pp. 411–423, 2006. DOI: 10.1080/10426910500411785.
  • M. Soni, M. Ahmed, S.K. Panthi, and S. Kumar, Effect of coil design parameters on performance of electromagnetic forming process, Mater. Manuf. Process., vol. 37, no. 1, pp. 64–80, 2022. DOI: 10.1080/10426914.2021.1945091.
  • C.L. Kuo, J.S. You, and S.F. Hwang, Initial experiment for embossing a 3-D microstructure on the inside wall of a wound tube by an electromagnetic compression process, J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A, vol. 34, no. 8, pp. 1025–1033, 2011. DOI: 10.1080/02533839.2011.618243.
  • J.R. Alves Z and F. Bay, Magnetic pulse forming: simulation and experiments for high-speed forming processes, Adv. Mater. Process. Technol., vol. 1, no. 3–4, pp. 560–576, 2015. DOI: 10.1080/2374068X.2015.1132723.
  • A. Shrivastava, A. Telang, A.K. Jha, and M. Ahmed, Experimental and numerical study on the influence of process parameters in electromagnetic compression of AA6061 tube, Mater. Manuf. Process., vol. 34, no. 13, pp. 1537–1548, 2019. DOI: 10.1080/10426914.2019.1655156.
  • Z. Lai, Q. Cao, B. Zhang, X. Han, Z. Zhou, Q. Xiong, X. Zhang, Q. Chen, and L. Li, Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system, J. Mater. Process. Technol., vol. 222, pp. 13–20, 2015. DOI: 10.1016/j.jmatprotec.2015.02.029.
  • Q. Xiong, H. Tang, C. Deng, L. Li, and L. Qiu, Electromagnetic attraction-based bulge forming in small tubes: fundamentals and simulations, IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1–5, Art no. 0600505, 2018. DOI: 10.1109/TASC.2017.2785778.
  • M. Seth, V.J. Vohnout, and G.S. Daehn, Formability of steel sheet in high velocity impact, J. Mater. Process. Technol., vol. 168, no. 3, pp. 390–400, 2005. DOI: 10.1016/j.jmatprotec.2004.08.032.
  • H. Park, D. Kim, J. Lee, J.H. Kim, M.-G. Lee, Y. Lee, and J.H. Song, Experimental study on electromagnetic forming of high strength steel sheets with different dimensions of aluminum driver plate, 6th International Conference on High Speed Forming (ICHSF), no. 10040078, pp. 237–242, 2014. DOI: 10.17877/DE290R-15600.
  • F. Li, J. Mo, J. Li, H. Zhou, and L. Huang, Study on the driver plate for electromagnetic forming of titanium alloy Ti-6Al-4V, Int. J. Adv. Manuf. Technol., vol. 69, no. 1–4, pp. 127–137, 2013. DOI: 10.1007/s00170-013-5002-1.
  • F. Li, J. Mo, H. Zhou, and Y. Fang, 3D numerical simulation method of electromagnetic forming for low conductive metals with a driver, Int. J. Adv. Manuf. Technol., vol. 64, no. 9–12, pp. 1575–1585, 2013. DOI: 10.1007/s00170-012-4124-1.
  • X. Deng, S. Qin, and J. Huang, Multiobjective optimization of axially varying thickness lateral corrugated tubes for energy absorption, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4259–4272, 2022. DOI: 10.1080/15376494.2021.1924901.
  • H. Savadkoohian, A. Fallahi Arezoodar, and B. Arezoo, Analytical and experimental study of wrinkling in electromagnetic tube compression, Int. J. Adv. Manuf. Technol., vol. 93, no. 1–4, pp. 901–914, 2017. DOI: 10.1007/s00170-017-0571-z.
  • Z. Khan, M. Khan, S.H. Imran Jaffery, M. Younas, K.S. Afaq, and M.A. Khan, Numerical and experimental investigation of the effect of process parameters on sheet deformation during the electromagnetic forming of AA6061-T6 alloy, Mech. Sci., vol. 11, no. 2, pp. 329–347, 2020. DOI: 10.5194/ms-11-329-2020.
  • D. Kumar, S.D. Kore, and A. Nandy, Experimental investigation of Cu-SS electromagnetically assisted adhesive tube-to-tube joining: its advantages over electromagnetic crimping, Int. J. Adhes. Adhes., vol. 109, pp. 102908, 2021. DOI: 10.1016/j.ijadhadh.2021.102908.
  • M. Ayaz, M. Khandaei, and Y. Vahidshad, Optimizing the mechanical properties of Al-SS joint using the numerical and experimental investigation of electromagnetic welding, J. Adhes. Sci. Technol., vol. 35, no. 20, pp. 2202–2229, 2021. DOI: 10.1080/01694243.2021.1882765.
  • M. Ayaz, M. Khandaei, and Y. Vahidshad, Evaluating the electromagnetic welding parameters for improving the mechanical properties of Al–Cu joint, Arab. J. Sci. Eng., vol. 45, no. 11, pp. 9619–9637, 2020. DOI: 10.1007/s13369-020-04868-x.
  • N. Senthilnathan, G. Venkatachalam, and N.N. Satonkar, A two stage finite element analysis of electromagnetic forming of perforated aluminium sheet metals, Procedia Eng., vol. 97, pp. 1135–1144, 2014. DOI: 10.1016/j.proeng.2014.12.392.
  • M. Shabanpour and A. Fallahi Arezoodar, Multi-objective optimization of the depth of bead and tearing in electromagnetic tube compression forming, Int. J. Adv. Manuf. Technol., vol. 87, no. 1–4, pp. 867–875, 2016. DOI: 10.1007/s00170-016-8519-2.
  • J.P.M. Correia and S. Ahzi, Electromagnetic sheet bulging: analysis of process parameters by FE simulations, Key Eng. Mater., vol. 554–557, pp. 741–748, 2013. DOI: 10.4028/www.scientific.net/KEM.554-557.741.
  • L. Huang, W. Feng, J. Zeng, and Z. Ding, Research on the drive electromagnetic forming of aluminum alloy and parameter optimization, Int. J. Adv. Manuf. Technol., vol. 120, no. 11–12, pp. 7101–7113, 2022. DOI: 10.1007/s00170-022-09214-z.
  • E. Paese, M. Geier, R.P. Homrich, R. Rossi, and P.A.R.C. Rosa, Assessment of process parameters in the optimization of the metal sheet electromagnetic forming process, IEEE Trans. Appl. Supercond., vol. 32, no. 6, pp. 1–6, 2022. DOI: 10.1109/TASC.2022.3165482.
  • K. Krishnaiah and P. Shahabudeen, Applied Design of Experiments and Taguchi Methods. PHI Learning Pvt Ltd, New Delhi, 2012.
  • F. Shah, M. Younas, M. Khan, A. Khan, Z. Khan, and N. Khan, Mechanical properties and weld characteristics of friction stir welding of thermoplastics using heat-assisted tool, Weld. World, vol. 67, no. 2, pp. 309–323, 2023. DOI: 10.1007/s40194-022-01385-3.
  • S.H.I Jaffery, M. Younas, M. Khan and L. Ali, Energy consumption analysis in turning Ti-6Al-4V alloy, 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), 20-22 Jan. 2020, pp. 18–21.
  • Z. Khan, M. Khan, S.-J. Yook, A. Khan, M. Younas, M.Z. Zahir, and M. Asad, Dynamic analysis of closed die electromagnetic sheet metal forming to predict deformation and failure of AA6061-T6 alloy using a fully coupled finite element model, Materials, vol. 15, no. 22, pp. 7997, 2022. DOI: 10.3390/ma15227997.
  • Z. Khan, M. Khan, S.H.I. Jaffery, M. Younas, and A. Khan, Numerical and experimental investigation of fully-coupled and uncoupled finite element model for electromagnetic forming of Aluminium Alloy Al 3014, IOP Conf. Ser. Mater. Sci. Eng., vol. 999, no. 1, pp. 012008, 2020. DOI: 10.1088/1757-899X/999/1/012008.
  • X. Cui, J. Mo, and J. Li, Research on homogeneous deformation of electromagnetic incremental tube bulging, 6th Int. Conf. High Speed Form., pp. 293–301, 2014.
  • E. Cadoni, L. Fenu, and D. Forni, Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars, Constr. Build. Mater., vol. 35, pp. 399–407, 2012. DOI: 10.1016/j.conbuildmat.2012.04.081.
  • X. Cui, J. Li, J. Mo, J. Fang, B. Zhou, and X. Xiao, Effect of the sheet thickness and current damping exponent on the optimum current frequency in electromagnetic forming, Int. J. Adv. Manuf. Technol., vol. 85, no. 1–4, pp. 843–851, 2016. DOI: 10.1007/s00170-015-7983-4.
  • M. Younas, S.H.I. Jaffery, M. Khan, M.A. Khan, R. Ahmad, A. Mubashar, and L. Ali, Multi-objective optimization for sustainable turning Ti6Al4V alloy using grey relational analysis (GRA) based on analytic hierarchy process (AHP), Int. J. Adv. Manuf. Technol., vol. 105, no. 1–4, pp. 1175–1188, 2019. DOI: 10.1007/s00170-019-04299-5.
  • A. Bigdeli, and M. Damghani Nouri, Experimental and numerical analysis and multi-objective optimization of quasi-static compressive test on thin-walled cylindrical with internal networking, Mech. Adv. Mater. Struct., vol. 26, no. 19, pp. 1644–1660, 2019. DOI: 10.1080/15376494.2018.1444231.
  • P. Gao, Y. Feng, and L. Wang, An improved grey relation analysis method and its application in dynamic description for a polymer injection, Pet. Sci. Technol., vol. 32, no. 2, pp. 133–139, 2014. DOI: 10.1080/10916466.2010.490806.
  • B.O. Samuel, M. Sumaila, and B. Dan-Asabe, Multi-objective optimization and modeling of a natural fiber hybrid reinforced composite (PxGyEz) for wind turbine blade development using grey relational analysis and regression analysis, Mech. Adv. Mater. Struct., pp. 1–19, 2022. DOI: 10.1080/15376494.2022.2118404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.