58
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Electromechanical coupling enriched finite element method for dynamic characteristic of piezoelectric materials structures

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 30 May 2023, Accepted 13 Jul 2023, Published online: 10 Aug 2023

References

  • C.F. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z.L. Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photon., vol. 7, no. 9, pp. 752–758, 2013. DOI: 10.1038/nphoton.2013.191.
  • J.F. Lu, Z. Yang, F. Li, M. Jiang, Y. Zhang, J. Sun, G. Hu, Q. Xu, C. Xu, C. Pan, and Z.L. Wang, Dynamic regulating of single-mode lasing in ZnO microcavity by piezoelectric effect, Mater. Today., vol. 24, pp. 33–40, 2019. DOI: 10.1016/j.mattod.2018.12.001.
  • M. Li, Y. Wang, Z. Yu, Y. Fu, J. Zheng, Y. Liu, J. Cui, H. Zhou, and D. Li, Self-powered infrared-responsive electronic skin employing piezoelectric nanofiber nanocomposites driven by microphase transition, ACS Appl. Mater Interface., vol. 12, no. 11, pp. 13165–13173, 2020. DOI: 10.1021/acsami.9b21766.
  • S. R. Kane, A. K., Sinha, R. S., Sumit, Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode, Mech. Adv. Mater. Struct., vol. 30, no. 10, pp. 2111–2120, 2023. DOI: 10.1080/15376494.2022.2050966.
  • M. Marin, E. Carrera, and S. Vlase, An extension of the Hamilton variational principle for piezoelectric bodies with dipolar structure, Mech. Adv. Mater. Struct., vol. 30, no. 12, pp. 2453–2457, 2023. DOI: 10.1080/15376494.2022.2055239.
  • D.S. Ibrahim, Y.X. Feng, X. Shen, U. Sharif, and A.A. Umar, On geometrical configurations of vibration-driven piezoelectric energy harvesters for optimum energy transduction: a critical review, Mech. Adv. Mater. Struct., vol. 30, no. 7, pp. 1340–1356, 2023. DOI: 10.1080/15376494.2022.2031357.
  • C. Thongchom, P.R. Saffari, P.R. Saffari, N. Refahati, S. Sirimontree, S. Keawsawasvong, and S. Titotto, Dynamic response of fluid-conveying hybrid smart carbon nanotubes considering slip boundary conditions under a moving nanoparticle, Mech. Adv. Mater. Struct., vol. 30, no. 11, pp. 2135–2148, 2023. DOI: 10.1080/15376494.2022.2051101.
  • S.S. Nanthakumar, T. Lahmer, X. Zhuang, G. Zi, and T. Rabczuk, Detection of material interfaces using a regularized level set method in piezoelectric structures, Inverse Probl. Sci. Eng., vol. 24, no. 1, pp. 153–176, 2016. DOI: 10.1080/17415977.2015.1017485.
  • Y. Li, L.Z. Yang, Y. Gao, and E.N. Pan, Cylindrical bending analysis of a layered two-dimensional piezoelectric quasicrystal nanoplate, J. Intell. Mater. Syst. Struct., vol. 29, no. 12, pp. 2660–2676, 2018. DOI: 10.1177/1045389X18770920.
  • J.H. Guo, and E.N. Pan, Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasi-crystal composites, J. Appl. Mech.-Trans. ASME., vol. 83, no. 8, pp. 081007, 2016. DOI: 10.1115/1.4033649.
  • Q.F. Lu, C.C. Liu, Z.H. Qin, W.S. Ma, and F.M. Li, Vibration control and band gap tuning of finite periodic structure composed by active functionally graded metamaterial bars, Mech. Adv. Mater. Struct., vol. 30, no. 4, pp. 856–869, 2023. DOI: 10.1080/15376494.2022.2025633.
  • H.N. Thi, Free vibration and static bending analysis of piezoelectric functionally graded material plates resting on one area of two-parameter elastic foundation, Math. Probl. Eng., vol. 2020, pp. 9236538, 2020. DOI: 10.1155/2020/9236538.
  • Y. Zhou, T. Nyberg, G. Xiong, and S. Li, State space finite element analysis for piezoelectric laminated curved beam with variable curvature, Mech. Adv. Mater. Struct., vol. 27, no. 4, pp. 265–273, 2020. DOI: 10.1080/15376494.2018.1472323.
  • S.Y. Wang, A finite element model for the static and dynamic analysis of a piezoelectric bimorph, Int. J. Solids Struct., vol. 41, no. 15, pp. 4075–4096, 2004. DOI: 10.1016/j.ijsolstr.2004.02.058.
  • H. Ghasemi, H.S. Park, and T. Rabczuk, A level-set based IGA foiniulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Eng., vol. 313, pp. 239–258, 2017. DOI: 10.1016/j.cma.2016.09.029.
  • H. Ghasemi, H.S. Park, and T. Rabczuk, A multi-material level set-based topology optimization of flexoelectric composites, Comput. Methods Appl. Mech. Eng., vol. 332, pp. 47–62, 2018. DOI: 10.1016/j.cma.2017.12.005.
  • M.Y. Cui, H.Z. Liu, H.L. Jiang, Y.B. Zheng, X. Wang, and W. Liu, Active vibration optimal control of piezoelectric cantilever beam with uncertainties, Meas. Control., vol. 55, no. 5–6, pp. 359–369, 2022. DOI: 10.1177/00202940221091244.
  • S.S. Nanthakumar, T. Lahmer, and T. Rabczuk, Detection of flaws in piezoelectric structures using extended FEM, Int. J. Numer. Meth. Engng., vol. 96, no. 6, pp. 373–389, 2013. DOI: 10.1002/nme.4565.
  • S.S. Nanthakumar, T. Lahmer, X.Y. Zhuang, H.S. Park, and T. Rabczuk, Topology optimization of piezoelectric nanostructures, J. Mech. Phys. Solids., vol. 94, pp. 316–335, 2016. DOI: 10.1016/j.jmps.2016.03.027.
  • V. T. Nguyen, P. Kumar, and J. Y. C. Leong, Finite element modellingand simulations of piezoelectric actuators responses with uncertainty quantification, Computation., vol. 6, no. 4, pp. 60, 2018. DOI: 10.3390/computation6040060.
  • N.T. Chung, N.N. Thuy, D.T.N. Thu, and L.H. Chau, Numerical and experimental analysis of the dynamic behavior of piezoelectric stiffened composite plates subjected to airflow, Math. Probl. Eng., vol. 2019, pp. 1–10, 2019. DOI: 10.1155/2019/2697242.
  • Z.W. Li, J. Ye, L. Liu, H. Cai, W.P. He, G. Cai, and Y. Wang, Evaluation of piezoelectric and mechanical properties of the piezoelectric composites with local damages, Mech. Adv. Mater. Struct., vol. 29, no. 23, pp. 3429–3446, 2022. DOI: 10.1080/15376494.2021.1901322.
  • S. Ghosh, and S. Guo, Developing a virtual damage sensor using a coupled electro-mechanical FE model of a piezoelectric material, Int J Mult Comp Eng., vol. 17, no. 4, pp. 447–468, 2019. DOI: 10.1615/IntJMultCompEng.2019030797.
  • Z. Yang, Z.C. Zhang, C.B. Liu, C.F. Gao, W.Q. Chen, and C.L. Zhang, Analysis of a hollow piezoelectric semiconductor composite cylinder under a thermal loading, Mech. Adv. Mater. Struct., vol. 30, no. 10, pp. 2037–2046, 2023. DOI: 10.1080/15376494.2022.2048424.
  • A.K. Singh, S. Koley, and A. Negi, Remarks on the scattering phenomena of love-type wave propagation in a layered porous piezoelectric structure containing surface irregularity, Mech. Adv. Mater. Struct., vol. 30, no. 12, pp. 2398–2429, 2023. DOI: 10.1080/15376494.2022.2053913.
  • B. Nie, G.W. Meng, and L.M. Zhou, The static and dynamic analysis for the coupling hygro-electro-mechanical multifield problems via stabilized node-based smoothed radial point interpolation method, Mech. Adv. Mater. Struct., vol. 30, no. 13, pp. 2651–2667, 2023. DOI: 10.1080/15376494.2022.2061657.
  • E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications, Comput. Methods Appl. Mech. Eng., vol. 362, pp. 112790, 2020. DOI: 10.1016/j.cma.2019.112790.
  • T.Q. Bui, S. Hirose, C. Zhang, T. Rabczuk, C.-T. Wu, T. Saitoh, and J. Lei, Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites, Mech. Mater., vol. 97, pp. 135–163, 2016. DOI: 10.1016/j.mechmat.2016.03.001.
  • S. Goswami, C. Anitescu, S. Chakraborty, and T. Rabczuk, Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Theor. Appl. Fract. Mech., vol. 106, pp. 102447, 2020. DOI: 10.1016/j.tafmec.2019.102447.
  • J. Lopez, C. Anitescu, and T. Rabczuk, Isogeometric structural shape optimization using automatic sensitivity analysis, Appl. Math. Modell., vol. 89, pp. 1004–1024, 2021. DOI: 10.1016/j.apm.2020.07.027.
  • H.W. Guo, X.Y. Zhuang, P.W. Chen, N. Alajlan, and T. Rabczuk, Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis, Eng. Comput., vol. 38, no. 6, pp. 5423–5444, 2022. DOI: 10.1007/s00366-022-01633-6.
  • J. Kim, and K.J. Bathe, The finite element method enriched by interpolation covers, Comput. Struct., vol. 116, pp. 35–49, 2013. DOI: 10.1016/j.compstruc.2012.10.001.
  • H.M. Jeon, P.S. Lee, and K.J. Bathe, The MITC3 shell finite element enriched by interpolation covers, Comput. Struct., vol. 134, pp. 128–142, 2014. DOI: 10.1016/j.compstruc.2013.12.003.
  • H. Jun, K. Yoon, P.S. Lee, and K.J. Bathe, The MITC3+ shell element enriched in membrane displacements by interpolation covers, Comput. Methods Appl. Mech. Eng., vol. 337, pp. 458–480, 2018. DOI: 10.1016/j.cma.2018.04.007.
  • Y.B. Chai, and K.J. Bathe, Transient wave propagation in inhomogeneous media with enriched overlapping triangular elements, Comput. Struct., vol. 237, pp. 106273, 2020. DOI: 10.1016/j.compstruc.2020.106273.
  • Y.B. Chai, W. Li, and Z.Y. Liu, Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions, Appl. Math. Comput., vol. 412, pp. 126564, 2022. DOI: 10.1016/j.amc.2021.126564.
  • L.M. Zhou, J.Y. Wang, Y.J. Wang, X.T. Li, and Y.B. Chai, The enriched finite element method-virtual crack closure technique for cracked structures, Thin-Walled Struct., vol. 187, pp. 110756, 2023. DOI: 10.1016/j.tws.2023.110756.
  • J. Qu, H.J. Xue, Y.C. Li, and Y.B. Chai, An enriched finite element method with appropriate interpolation cover functions for transient wave propagation dynamic problems, Mathematics., vol. 10, no. 9, pp. 1380, 2022. DOI: 10.3390/math10091380.
  • K.Y. Sze, X.M. Yang, and L.Q. Yao, Stabilized plane and axisymmetric piezoelectric finite element models, Finite Elem. Anal. Des., vol. 40, no. 9–10, pp. 1105–1122, 2004. DOI: 10.1016/j.finel.2003.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.