158
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Investigation on the thermoelastic response of a porous microplate in a modified fractional-order heat conduction model incorporating the nonlocal effect

, &
Received 05 May 2023, Accepted 13 Jul 2023, Published online: 21 Jul 2023

References

  • J.W. Nunziato, and S.C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., vol. 72, no. 2, pp. 175–201, 1979. DOI:10.1007/BF00249363.
  • S.C. Cowin, and J.W. Nunziato, Linear elastic materials with voids, J. Elasticity, vol. 13, no. 2, pp. 125–147, 1983. DOI:10.1007/BF00041230.
  • D. Ieşan, A theory of thermoelastic materials with voids, Acta Mech., vol. 60, no. 1–2, pp. 67–89, 1986. DOI:10.1007/BF01302942.
  • M. Marin, An uniqueness result for body with voids in linear thermoelasticity, Rend. Lincei-Mat. Appl., vol. 17, no. 7, pp. 103–113, 1997.
  • M. Marin, On the domain of influence in thermoelasticity of bodies with voids, Arch. Mathematicum, vol. 33, no. 3, pp. 301–308, 1997.
  • D. Ieşan, On a theory of thermoviscoelastic materials with voids, J. Elast., vol. 104, no. 1–2, pp. 369–384, 2011. DOI:10.1007/s10659-010-9300-7.
  • D. Ieşan, and R. Quintanilla, On a theory of thermoelastic materials with a double porosity structure, J. Therm. Stresses, vol. 37, no. 9, pp. 1017–1036, 2014. DOI:10.1080/01495739.2014.914776.
  • C. Cattaneo, Sulla conduzione del calore, Atti, Semin. Mat. Fis. Univ. Modena., vol. 3, pp. 83–101, 1948.
  • P. Vernotte, Les paradoxes de la theorie continue de I’equation de la chaleur, Comptes Rendus., vol. 246, pp. 3154–3155, 1958.
  • D. Tzou, A unique field approach for heat conduction from macro to micro scales, J. Heat Trans.-T. ASME, vol. 117, no. 1, pp. 8–16, 1995. DOI:10.1115/1.2822329.
  • S.K. Choudhuri, On a thermoelastic three-phase-lag model, J. Therma. Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI:10.1080/01495730601130919.
  • M.A. Ezzat, A.A. El-Bary, and M.A. Fayik, Fractional Fourier law with three-phase lag of thermoelasticity, Mech. Adv. Mater. Struct., vol. 20, no. 8, pp. 593–602, 2013. DOI:10.1080/15376494.2011.643280.
  • M.S. Barak, and Vipin Gupta, Memory-dependent and fractional order analysis of the initially stressed piezo-thermoelastic medium, Mech. Adv. Mater. Struct., pp. 1–15, 2023. DOI:10.1080/15376494.2023.2211065.
  • A.D. Hobiny, F.S. Alzahrani, and I.A. Abbas, Analytical estimation of temperature in living tissues using the TPL bioheat model with experimental verification, Mathematics, vol. 8, no. 7, pp. 1188–1198, 2020. DOI:10.3390/math8071188.
  • P. Liu, and T.H. He, Dynamic response of thermoelastic materials with voids subjected to ramp-type heating under three-phase-lag thermoelasticity, Mech. Adv. Mater. Struct., vol. 29, no. 10, pp. 1386–1394, 2022. DOI:10.1080/15376494.2020.1821137.
  • H.W. Lord, and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids., vol. 15, no. 5, pp. 299–309, 1967. DOI:10.1016/0022-5096(67)90024-5.
  • A.E. Green, and K.A. Lindsay, Thermoelasticity, J. Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI:10.1007/BF00045689.
  • A.E. Green, and P.M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI:10.1007/BF00044969.
  • D.Y. Tzou, The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Tran., vol. 38, no. 17, pp. 3231–3240, 1995. DOI:10.1016/0017-9310(95)00052-B.
  • F. Xu, K.A. Seffen, and T.J. Lu, Non-fourier analysis of skin biothermomechanics, Int. J. Heat Mass Tran., vol. 51, no. 9-10, pp. 2237–2259, 2008. DOI:10.1016/j.ijheatmasstransfer.2007.10.024.
  • A.M. Abd-Alla, S.M. Abo-Dahab, and A.A. Kilany, Effect of several fields on a generalized thermoelastic medium with voids in the context of lord-shulman or dual-phase-lag models, Mech. Based. Des. Struc., vol. 50, no. 11, pp. 3901–3924, 2022. DOI:10.1080/15397734.2020.1823852.
  • M. Ragab, S.M. Abo-Dahab, A.E. Abouelregal, and A.A. Kilany, A thermoelastic piezoelectric fixed rod exposed to an axial moving heat source via a dual-phase-lag model, Complexity, vol. 2021, pp. 1–11, 2021. DOI:10.1155/2021/5547566.
  • A.A. Kilany, S.M. Abo-Dahab, A.M. Abd-Alla, and E.A.B. Abdel-Salam, Non-integer order analysis of electro-magneto-thermoelastic with diffusion and voids considering lord–shulman and dual-phase-lag models with rotation and gravity, Wave, Random. Complex., vol. 2021, pp. 1–31, 2022. DOI:10.1155/2021/5547566.
  • S.M. Abo-Dahab, A.M. Abd-Alla, and A.A. Kilany, Homotopy perturbation method on wave propagation in a transversely isotropic thermoelastic two-dimensional plate with gravity field, Numer. Heat Tr. A- Appl., vol. 82, no. 7, pp. 398–410, 2022. DOI:10.1080/10407782.2022.2079292.
  • A.E. Abouelregal, and S.M. Abo-Dahab, Dual phase lag model on magneto-thermoelasticity infinite non-homogeneous solid having a spherical cavity, J. Therm. Stresses, vol. 35, no. 9, pp. 820–841, 2012. DOI:10.1080/01495739.2012.697838.
  • F.L. Guo, G.Q. Wang, and G.A. Rogerson, Analysis of thermoelastic damping in micro-and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory, Int. J. Eng. Sci., vol. 60, pp. 59–65, 2012. DOI:10.1016/j.ijengsci.2012.04.007.
  • D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., vol. 51, no. 12, pp. 705–729, 1998. DOI:10.1115/1.3098984.
  • H.M. Youssef, Theory of fractional order generalized thermoelasticity, J. Heat Transf., vol. 132, no. 6, pp. 51301, 2010. DOI:10.1115/1.4000705.
  • H.H. Sherief, A.M.A. El-Sayed, and A.M.A. El-Latief, Fractional order theory of thermoelasticity, Int. J. Solids Struct., vol. 47, no. 2, pp. 269–275, 2010. DOI:10.1016/j.ijsolstr.2009.09.034.
  • M.A. Ezzat, and A.A. El-Bary, Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories, Steel Compos. Struct. Int. J., vol. 24, no. 3, pp. 297–307, 2017. DOI:10.12989/SCS.2017.24.3.297.
  • M.A. Ezzat, A.S. El-Karamany, and A.A. El-Bary, Two-temperature theory in Green–Naghdi thermoelasticity with fractional phase-lag heat transfer, Microsyst. Technol., vol. 24, no. 2, pp. 951–961, 2018. DOI:10.1007/s00542-017-3425-6.
  • M.A. Ezzat, and A.A. El-Bary, Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature, JAE, vol. 50, no. 4, pp. 549–567, 2016. DOI:10.3233/JAE-150131.
  • M.A. Ezzat, A.S. El-Karamany, and A.A. El-Bary, Generalized thermo-viscoelasticity with memory-dependent derivatives, Int. J. Mech. Sci., vol. 89, pp. 470–475, 2014. DOI:10.1016/j.ijmecsci.2014.10.006.
  • Y.B. Ma, and T.H. He, The transient response of a functionally graded piezoelectric rod subjected to a moving heat source under fractional order theory of thermoelasticity, Mech. Adv. Mater. Struct., vol. 24, no. 9, pp. 789–796, 2017. DOI:10.1080/15376494.2016.1196783.
  • X.Y. Li, Z.N. Xue, and X.G. Tian, A modified fractional order generalized bio-thermoelastic theory with temperature-dependent thermal material properties, Int. J. Therm. Sci., vol. 132, pp. 249–256, 2018. DOI:10.1016/j.ijthermalsci.2018.06.007.
  • A.M. Zenkour, and A.E. Abouelregal, State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction, Z Angew. Math. Phys., vol. 65, no. 1, pp. 149–164, 2014. DOI:10.1007/s00033-013-0313-5.
  • D.S. Oliveira, and E. Capelas de Oliveira, On a Caputo-type fractional derivative, Adv. Pure Appl. Math., vol. 10, no. 2, pp. 81–91, 2019. DOI:10.1515/apam-2017-0068.
  • Y.J. Yu, and Z.C. Deng, Fractional order theory of Cattaneo-type thermoelasticity using new fractional derivatives, Appl. Math. Model., vol. 87, pp. 731–751, 2020. DOI:10.1016/j.apm.2020.06.023.
  • Y.J. Yu, W. Hu, and X.G. Tian, A novel generalized thermoelasticity model based on memory-dependent derivative, Int. J. Eng. Sci., vol. 81, pp. 123–134, 2014. DOI:10.1016/j.ijengsci.2014.04.014.
  • M. Caputo, and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., vol. 1, no. 2, pp. 73–85, 2015.
  • A. Atangana, and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., vol. 20, no. 2, pp. 763–769, 2016. DOI:10.2298/TSCI160111018A.
  • C. Li, W.H. Deng, and L.J. Zhao, Well-posedness and numerical algorithm for the tempered fractional differential equations, Discrete Cont. Dyn. B, vol. 24, no. 4, pp. 1989–2015, 2019. DOI:10.3934/dcdsb.2019026.
  • A.E. Abouelregal, Fractional derivative Moore-Gibson-Thompson heat equation without singular kernel for a thermoelastic medium with a cylindrical hole and variable properties, Zamm-Z Angew. Math. Me., vol. 102, no. 1, pp. e202000327, 2022. DOI:10.1002/zamm.202000327.
  • S. Mondal, A. Sur, and M. Kanoria, Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo–Fabrizio heat transport law, Acta Mech., vol. 230, no. 12, pp. 4367–4384, 2019. DOI:10.1007/s00707-019-02498-5.
  • A.E. Abouelregal, A.H. Sofiyev, H.M. Sedighi, and M.A. Fahmy, Generalized heat equation with the Caputo–Fabrizio fractional derivative for a nonsimple thermoelastic cylinder with temperature-dependent properties, Phys. Mesomech., vol. 26, no. 2, pp. 224–240, 2023. DOI:10.1134/S1029959923020108.
  • A. Coronel-Escamilla, J.F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, and M.M.Al Qurashi, Bateman–Feshbach Tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation, Entropy, vol. 19, no. 2, pp. 55–67, 2017. DOI:10.3390/e19020055.
  • A. Khan, K.A. Abro, A. Tassaddiq, and I. Khan, Atangana-Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: A comparative study, Entropy, vol. 19, no. 8, pp. 279–290, 2017. DOI:10.3390/e19080279.
  • V.F. Morales-Delgado, M. Taneco-Hernández, and J.F. Gómez-Aguilar, On the solutions of fractional order of evolution equations, Eur. Phys. J. Plus, vol. 132, no. 1, pp. 47–60, 2017. DOI:10.1140/epjp/i2017-11341-0.
  • M.D. Paola, A. Pirrotta, and A. Valenza, Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results, Mech. Mater., vol. 43, no. 12, pp. 799–806, 2011. DOI:10.1016/j.mechmat.2011.08.016.
  • H.M. Youssef, Theory of generalized thermoelasticity with fractional order Strain, J. Vib. Control., vol. 22, no. 18, pp. 3840–3857, 2016. DOI:10.1177/1077546314566837.
  • C.L. Li, H.L. Guo, X.G. Tian, and T.H. He, Generalized thermoviscoelastic analysis with fractional order strain in a thick viscoelastic plate of infinite extent, J. Therm. Stresses, vol. 42, no. 8, pp. 1051–1070, 2019. DOI:10.1080/01495739.2019.1587331.
  • A.C. Eringen, and J.L. Wegner, Nonlocal continuum field theories, Appl. Mech. Rev., vol. 56, no. 2, pp. B20–B22, 2003. DOI:10.1115/1.1553434.
  • J. Peddieson, G.R. Buchanan, and R.P. McNitt, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., vol. 41, no. 3-5, pp. 305–312, 2003. DOI:10.1016/S0020-7225(02)00210-0.
  • C.L. Li, T.H. He, and X.G. Tian, Transient responses of nanosandwich structure based on size-dependent generalized thermoelastic diffusion theory, J. Therm. Stresses, vol. 42, no. 9, pp. 1171–1191, 2019. DOI:10.1080/01495739.2019.1623140.
  • A. Khurana, and S.K. Tomar, Rayleigh-type waves in nonlocal micropolar solid half-space, Ultrasonics, vol. 73, pp. 162–168, 2017. DOI:10.1016/j.ultras.2016.09.005.
  • Y.J. Yu, X.G. Tian, and X.R. Liu, Size-dependent generalized thermoelasticity using Eringen’s nonlocal model, Eur. J. Mech. A Solid, vol. 51, pp. 96–106, 2015. DOI:10.1016/j.euromechsol.2014.12.005.
  • S. Gupta, S. Das, and R. Dutta, Peltier and Seebeck effects on a nonlocal couple stress double porousthermoelastic diffusive material under memory-dependentMoore-Gibson-Thompson theory, Mech. Adv. Mater. Struct., vol. 30, no. 3, pp. 449–472, 2023. DOI:10.1080/15376494.2021.2017525.
  • C. Tao, and T. Dai, Large amplitude free vibration of porous skew and elliptical nanoplates based on nonlocal elasticity by isogeometric analysis, Mech. Adv. Mater. Struct., vol. 29, no. 18, pp. 2652–2667, 2022. DOI:10.1080/15376494.2021.1873467.
  • A.C. Eringen, and J.L. Wegner, Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.
  • L.C. Tian, W. Peng, and T.H. He, Dual-phase-lag thermoelastic diffusion analysis of a size-dependent microplate based on modified fractional-order heat conduction model, Zamm-Z, Angew. Math. Me., vol. 102, pp. e202200124, 2022. DOI:10.1002/zamm.202200124.
  • W. Peng, L.K. Chen, and T.H. He, A modified fractional-order thermo-viscoelastic model and its application to a polymer micro-rod heated by a moving heat source, Appl. Math. Mech-Engl. Ed., vol. 43, no. 4, pp. 507–522, 2022. DOI:10.1007/s10483-022-2835-9.
  • D. Tzou, M. Ozisik, and R. Chiffelle, The lattice temperature in the microscopic two-step model, J. Heat Transfer., vol. 116, no. 4, pp. 1034–1038, 1994. DOI:10.1115/1.2911439.
  • Y. Li, T.H. He, and X.G. Tian, A generalized thermoelastic diffusion theory of porous materials considering strain, thermal and diffusion relaxation, and its application in the ultrashort pulse laser heating, Acta Mech., vol. 234, no. 3, pp. 1083–1103, 2023. DOI:10.1007/s00707-022-03433-x.
  • R. Kumar, and R. Kumar, Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media, Meccanica, vol. 48, no. 9, pp. 2173–2188, 2013. DOI:10.1007/s11012-013-9732-9.
  • S.Q. He, P. Wei, Y.B. Ma, and T.H. He, Investigation on the transient response of a porous half-space with strain and thermal relaxations, Eur. J. Mech. A-Solid, vol. 84, pp. 104064, 2020. DOI:10.1016/j.euromechsol.2020.104064.
  • W. Peng, Y.B. Ma, C.L. Li, and T.H. He, Dynamic analysis to the fractional order thermoelastic diffusion problem of an infinite body with a spherical cavity and variable material properties, J. Therm. Stresses, vol. 43, no. 1, pp. 38–54, 2020. DOI:10.1080/01495739.2019.1676681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.