582
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Machine learning assisted coupled frequency analysis of skewed multi-phase magnetoelectric composite plates with temperature and moisture dependent properties

ORCID Icon, , &
Received 28 May 2023, Accepted 26 Jul 2023, Published online: 09 Aug 2023

References

  • A.D.B. Ferreira, P.R. Nóvoa, and A.T. Marques, Multifunctional material systems: a state-of-the-art review, Compos. Struct., vol. 151, pp. 3–35, 2016. DOI: 10.1016/j.compstruct.2016.01.028.
  • X. Xu, Q. Wu, Y. Pang, Y. Cao, Y. Fang, G. Huang, and C. Cao, Multifunctional metamaterials for energy harvesting and vibration control, Adv. Funct. Mater., vol. 32, no. 7, pp. 2107896, 2022. DOI: 10.1002/adfm.202107896.
  • D.S. Ibrahim, Y. Feng, X. Shen, U. Sharif, and A.A. Umar, On geometrical configurations of vibration-driven piezoelectric energy harvesters for optimum energy transduction: a critical review, Mech. Adv. Mater. Struct., vol. 30, no. 7, pp. 1340–1356, 2023. DOI: 10.1080/15376494.2022.2031357.
  • R. Sun, D. Liu, and Z. Yan, A finite element approach for flexoelectric nonuniform nanobeam energy harvesters, Mech. Adv. Mater. Struct., vol. 30, no. 12, pp. 2430–2441, 2023. DOI: 10.1080/15376494.2022.2053914.
  • A. Aladwani, O. Aldraihem, and A. Baz, A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier, Mech. Adv. Mater. Struct., vol. 21, no. 7, pp. 566–578, 2014. DOI: 10.1080/15376494.2012.699600.
  • M. Askari, E. Brusa, and C. Delprete, Vibration energy harvesting via piezoelectric bimorph plates: an analytical model, Mech. Adv. Mater. Struct., pp. 1–22, 2022. DOI: 10.1080/15376494.2022.2104975.
  • X.F. Shen, T.C. Yuan, J. Yang, R. Song, and Y. Fang, Vibration energy harvester of high-speed track slab foundation excitation, Mech. Adv. Mater. Struct., pp. 1–13, 2023. DOI: 10.1080/15376494.2023.2223799.
  • R.C. Dash, D.K. Maiti, and B.N. Singh, Nonlinear dynamic analysis of galloping based piezoelectric energy harvester employing finite element method, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 4964–4971, 2022. DOI: 10.1080/15376494.2021.1943082.
  • K. Bendine, F.B. Boukhoulda, B. Haddag, and M. Nouari, Active vibration control of composite plate with optimal placement of piezoelectric patches, Mech. Adv. Mater. Struct., vol. 26, no. 4, pp. 341–349, 2019. DOI: 10.1080/15376494.2017.1387324.
  • H. Zhang, W. Sun, H. Luo, and R. Zhang, Active vibration control of composite laminates with MFC based on PID-LQR hybrid controller, Mech. Adv. Mater. Struct., pp. 1–18, 2023. pp. DOI: 10.1080/15376494.2023.2229841.
  • S. Zhang, Y. He, L. Fan, and X. Chen, Active vibration control of smart beam by μ-synthesis technology: modeling via finite element method based on FSDT, Mech. Adv. Mater. Struct., pp. 1–14, 2022. DOI: 10.1080/15376494.2022.2103217.
  • M.S. Rechdaoui, L. Azrar, S. Belouettar, E.M. Daya, and M. Potier-Ferry, Active vibration control of piezoelectric sandwich beams at large amplitudes, Mech. Adv. Mater. Struct., vol. 16, no. 2, pp. 98–109, 2009. DOI: 10.1080/15376490802543691.
  • V.S.C. Chillara, and M.J. Dapino, Review of morphing laminated composites, Appl. Mech. Rev., vol. 72, no. 1, pp. 010801, 2020. DOI: 10.1115/1.4044269.
  • D. Karagiannis, D. Stamatelos, V. Kappatos, and T. Spathopoulos, An investigation of shape memory alloys as actuating elements in aerospace morphing applications, Mech. Adv. Mater. Struct., vol. 24, no. 8, pp. 647–657, 2017. DOI: 10.1080/15376494.2016.1196772.
  • K. Holeczek, B. Zhou, and P. Kostka, Evanescent morphing for tuning the dynamic behavior of composite lightweight structures: theoretical assessment, Mech. Adv. Mater. Struct., vol. 28, no. 7, pp. 721–730, 2021. DOI: 10.1080/15376494.2019.1601306.
  • P. Ladpli, R. Nardari, F. Kopsaftopoulos, and F.K. Chang, Multifunctional energy storage composite structures with embedded lithium-ion batteries, J. Power Sources, vol. 414, pp. 517–529, 2019. DOI: 10.1016/j.jpowsour.2018.12.051.
  • K. Chadha, V. Mahesh, A.S. Mangalasseri, and V. Mahesh, On analysing vibration energy harvester with auxetic core and magneto-electro-elastic facings, Thin-Walled Struct., vol. 184, pp. 110533, 2023. DOI: 10.1016/j.tws.2023.110533.
  • V. Mahesh, and A.S. Mangalasseri, Agglomeration effects of CNTs on the energy harvesting performance of multifield interactive magneto-electro-elastic/nanocomposite unimorph smart beam, Mech. Based Des. Struct. Mach., pp. 1–27, 2022. DOI: 10.1080/15397734.2022.2144886.
  • V. Mahesh, Porosity effect on the energy harvesting behaviour of functionally graded magneto-electro-elastic/fibre-reinforced composite beam, Eur. Phys. J. Plus, vol. 137, no. 1, pp. 48, 2022. DOI: 10.1140/epjp/s13360-021-02235-9.
  • V. Mahesh, Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets, Thin. Walled Struct., vol. 179, pp. 109547, 2022. DOI: 10.1016/j.tws.2022.109547.
  • T. Nguyen-Thoi, K.D. Ly, T.T. Truong, S.N. Nguyen, and V. Mahesh, Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed FEM and metaheuristic algorithm, Eng. Struct., vol. 259, pp. 114062, 2022. DOI: 10.1016/j.engstruct.2022.114062.
  • B. Nie, G. Meng, and L. Zhou, The static and dynamic analysis for the coupling hygro-electro-mechanical multifield problems via stabilized node-based smoothed radial point interpolation method, Mech. Adv. Mater. Struct., vol. 30, no. 13, pp. 2651–2667, 2023. DOI: 10.1080/15376494.2022.2061657.
  • B. Nie, J. Xi, Y. Wang, G. Meng, L. Zhou, and Y. Xin, Thermo-electro-mechanical coupling dynamic analysis of piezoelectric structures via stabilized node-based smoothed radial point interpolation method, Mech. Adv. Mater. Struct., pp. 1–17, 2022. pp. DOI: 10.1080/15376494.2022.2109783.
  • M.H. Kargarnovin, R. Hashemi, and A.A. Emami, Electroelastic analysis of FG piezoelectric structures under thermo-electro-mechanical loadings, Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 11–27, 2013. DOI: 10.1080/15376494.2011.581411.
  • M. Vinyas, and S.C. Kattimani, Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: a finite element study, Compos. Struct., vol. 178, pp. 63–86, 2017. DOI: 10.1016/j.compstruct.2017.06.068.
  • M. Vinyas, and S.C. Kattimani, Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads, Compos. Struct., vol. 163, pp. 216–237, 2017. DOI: 10.1016/j.compstruct.2016.12.040.
  • M. Vinyas, and S.C. Kattimani, Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis, Compos. Struct., vol. 180, pp. 617–637, 2017. DOI: 10.1016/j.compstruct.2017.08.015.
  • M. Vinyas, and S.C. Kattimani, Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates, Compos. Struct., vol. 185, pp. 51–64, 2018. DOI: 10.1016/j.compstruct.2017.10.073.
  • Y.F. Zhao, Y.S. Gao, X. Wang, B. Markert, and S.Q. Zhang, Finite element analysis of functionally graded magneto-electro-elastic porous cylindrical shells subjected to thermal loads, Mech. Adv. Mater. Struct., pp. 1–16, 2023. pp. DOI: 10.1080/15376494.2023.2188326.
  • A. Akbarzadeh, and Z. Chen, Thermo-magneto-electro-elastic responses of rotating hollow cylinders, Mech. Adv. Mater. Struct., vol. 21, no. 1, pp. 67–80, 2014. DOI: 10.1080/15376494.2012.677108.
  • M.A. Koç, İ. Esen, and M. Eroğlu, Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity, Mech. Adv. Mater. Struct., pp. 1–33, 2023. DOI: 10.1080/15376494.2023.2199412.
  • Y.F. Zheng, C.C. Kang, L.L. Xu, and C.P. Chen, Nonlinear analysis of rectangular magnetoelectroelastic moderately thick laminated plates under multi-field coupling loads, Thin-Walled Struct., vol. 177, pp. 109406, 2022. DOI: 10.1016/j.tws.2022.109406.
  • L. Zhou, and F. Qu, The magneto-electro-elastic coupling isogeometric analysis method for the static and dynamic analysis of magneto-electro-elastic structures under thermal loading, Compos. Struct., vol. 315, pp. 116984, 2023. DOI: 10.1016/j.compstruct.2023.116984.
  • L. Zhou, F. Qu, S. Ren, and V. Mahesh, An inhomogeneous stabilized node-based smoothed radial point interpolation method for the multi-physics coupling responses of functionally graded magneto-electro-elastic structures, Eng. Anal. Bound. Elem., vol. 151, pp. 406–422, 2023. DOI: 10.1016/j.enganabound.2023.02.049.
  • B. Nie, G. Meng, S. Ren, J. Wang, Z. Ren, L. Zhou, and P. Liu, Stable node-based smoothed radial point interpolation method for the dynamic analysis of the hygro-thermo-magneto-electro-elastic coupling problem, Eng. Anal. Bound. Elem., vol. 134, pp. 435–452, 2022. DOI: 10.1016/j.enganabound.2021.10.015.
  • Y. Ni, J. Sun, J. Zhang, Z. Tong, Z. Zhou, and X. Xu, Accurate buckling analysis of magneto-electro-elastic cylindrical shells subject to hygro-thermal environments, Appl. Math. Modell., vol. 118, pp. 798–817, 2023. DOI: 10.1016/j.apm.2023.02.015.
  • Y.F. Zheng, L.C. Liu, D.Y. Qu, and C.P. Chen, Nonlinear postbuckling analysis of magneto-electro-thermo-elastic laminated microbeams based on modified couple stress theory, Appl. Math. Modell., vol. 118, pp. 89–106, 2023. DOI: 10.1016/j.apm.2023.01.021.
  • Y. Gui, and R. Wu, Buckling analysis of embedded thermo-magneto-electro-elastic nano cylindrical shell subjected to axial load with nonlocal strain gradient theory, Mech. Res. Commun., vol. 128, pp. 104043, 2023. DOI: 10.1016/j.mechrescom.2023.104043.
  • I. Esen, and R. Özmen, Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity, Compos. Struct., vol. 296, pp. 115878, 2022. DOI: 10.1016/j.compstruct.2022.115878.
  • S. Sirimontree, C. Thongchom, P.R. Saffari, N. Refahati, P.R. Saffari, T. Jearsiripongkul, and S. Keawsawasvong, Effects of thermal environment and external mean flow on sound transmission loss of sandwich functionally graded magneto-electro-elastic cylindrical nanoshell, Eur. J. Mech. A/Solids, vol. 97, pp. 104774, 2023. DOI: 10.1016/j.euromechsol.2022.104774.
  • A.R. Barati, and M. Shariyat, Novel exact layerwise analytical solution for anisotropic multi-layer magneto-piezo-elastic hollow spheres under asymmetric magneto-electro-hygro-thermo-mechanical loads, Compos. Struct., vol. 302, pp. 116227, 2022. DOI: 10.1016/j.compstruct.2022.116227.
  • N.D. Dat, T.Q. Quan, V. Mahesh, and N.D. Duc, Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment, Int. J. Mech. Sci., vol. 186, pp. 105906, 2020. DOI: 10.1016/j.ijmecsci.2020.105906.
  • M. Vinyas, Vibration control of skew magneto-electro-elastic plates using active constrained layer damping, Compos. Struct., vol. 208, pp. 600–617, 2019. DOI: 10.1016/j.compstruct.2018.10.046.
  • M. Vinyas, G. Nischith, M.A.R. Loja, F. Ebrahimi, and N.D. Duc, Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory, Compos. Struct., vol. 214, pp. 132–142, 2019. DOI: 10.1016/j.compstruct.2019.02.010.
  • C.V. Srinivasa, W.P. Prema Kumar, M.T. Prathap Kumar, A.R. Bangar, P. Kumar, and M.S. Rudresh, Experimental and numerical studies on buckling of laminated composite skew plates with circular holes under uniaxial compression, Mech. Adv. Mater. Struct., vol. 24, no. 4, pp. 304–317, 2017. DOI: 10.1080/15376494.2016.1142023.
  • P. Malekzadeh, H.M. Maharloei, and A.R. Vosoughi, A three-dimensional layerwise-differential quadrature free vibration of thick skew laminated composite plates, Mech. Adv. Mater. Struct., vol. 21, no. 10, pp. 792–801, 2014. DOI: 10.1080/15376494.2012.707751.
  • H. Mohamed, V. Gunasekaran, J. Pitchaimani, V. Rajamohan, G. Kotriwar, and G. Manickam, A comprehensive damping study of variable stiffness composite rectangular/skew laminates reinforcement with curvilinear fibers by higher-order shear flexible model, Mech. Adv. Mater. Struct., vol. 30, no. 14, pp. 2806–2825, 2023. DOI: 10.1080/15376494.2022.2064014.
  • C. Tao, and T. Dai, Large amplitude free vibration of porous skew and elliptical nanoplates based on nonlocal elasticity by isogeometric analysis, Mech. Adv. Mater. Struct., vol. 29, no. 18, pp. 2652–2667, 2022. DOI: 10.1080/15376494.2021.1873467.
  • V. Kallannavar, and S. Kattimani, Effect of temperature on the performance of active constrained layer damping of skew sandwich plate with CNT reinforced composite core, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5423–5442, 2022. DOI: 10.1080/15376494.2021.1955315.
  • A.R. Noroozi, and P. Malekzadeh, Investigating nonlinear moving load responses of FG-GPLRC skew plates using meshfree radial point interpolation method, Compos. Struct., vol. 308, pp. 116718, 2023. DOI: 10.1016/j.compstruct.2023.116718.
  • Y. Duan, B. Zhang, X. Zhang, L. Zhang, and H. Shen, Accurate mechanical buckling analysis of couple stress-based skew thick microplates, Aerosp. Sci. Technol., vol. 132, pp. 108056, 2023. DOI: 10.1016/j.ast.2022.108056.
  • V. Sengar, M. Nynaru, G. Watts, R. Kumar, and S. Singh, Postbuckled vibration behaviour of skew sandwich plates with metal foam core under arbitrary edge compressive loads using isogeometric approach, Thin. Walled Struct., vol. 184, pp. 110524, 2023. DOI: 10.1016/j.tws.2023.110524.
  • M. Abdollahi, A.R. Saidi, and R. Bahaadini, An investigation of aero-thermo-elastic flutter and divergence of functionally graded porous skew plates, Compos. Struct., vol. 286, pp. 115264, 2022. DOI: 10.1016/j.compstruct.2022.115264.
  • Y. Kiani, and K.K. Żur, Free vibrations of graphene platelet reinforced composite skew plates resting on point supports, Thin-Walled Struct., vol. 176, pp. 109363, 2022. DOI: 10.1016/j.tws.2022.109363.
  • H. S. Naveen Kumar, S. Kattimani, and T. Nguyen-Thoi, Influence of porosity distribution on nonlinear free vibration and transient responses of porous functionally graded skew plates, Defence Technol., vol. 17, no. 6, pp. 1918–1935, 2021. DOI: 10.1016/j.dt.2021.02.003.
  • R. Vaghefi, Three-dimensional temperature-dependent thermo-elastoplastic bending analysis of functionally graded skew plates using a novel meshless approach, Aerosp. Sci. Technol., vol. 104, pp. 105916, 2020. DOI: 10.1016/j.ast.2020.105916.
  • T. Farsadi, M. Rahmanian, and H. Kurtaran, Nonlinear analysis of functionally graded skewed and tapered wing-like plates including porosities: a bifurcation study, Thin-Walled Struct., vol. 160, pp. 107341, 2021. DOI: 10.1016/j.tws.2020.107341.
  • V. Mahesh, Nonlinear free vibration of multifunctional sandwich plates with auxetic core and magneto-electro-elastic facesheets of different micro-topological textures: FE approach, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6266–6287, 2022. DOI: 10.1080/15376494.2021.1974619.
  • A. Bastani, H. Amindavar, M. Shamshirsaz, and N. Sepehry, Adaptive linear prediction damage detection technique in structural health monitoring, Mech. Adv. Mater. Struct., vol. 19, no. 6, pp. 492–498, 2012. DOI: 10.1080/15376494.2011.556838.
  • N.X. Ho, T.T. Le, and M.V. Le, Development of artificial intelligence based model for the prediction of Young’s modulus of polymer/carbon-nanotubes composites, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 5965–5978, 2022. DOI: 10.1080/15376494.2021.1969709.
  • Y. Chen, and G. Zhao, On the energy absorption of the reinforced sandwich curved beam equipped with piezoelectric layers through ANN and MCS analyses, Mech. Adv. Mater. Struct., pp. 1–10, 2023. DOI: 10.1080/15376494.2023.2206835.
  • Afsal K. P, K. Swaminathan, N. Indu, and Sachin H, A novel EFG meshless-ANN approach for static analysis of FGM plates based on the higher-order theory, Mech. Adv. Mater. Struct., pp. 1–17, 2023. DOI: 10.1080/15376494.2023.2231459.
  • M. Shakir, M. Talha, and A.D. Dileep, Machine learning based probabilistic model for free vibration analysis of functionally graded graphene nanoplatelets reinforced porous plates, Mech. Adv. Mater. Struct., pp. 1–14, 2023. pp. DOI: 10.1080/15376494.2023.2225051.
  • D. Li, P. Wang, N. Sarhan, and M. Sharaf, Soft computational approach on the thermoelastic assessment of the sandwich beams with transversely functionally graded composite concrete face-sheets as an advanced building material, Mech. Adv. Mater. Struct., pp. 1–21, 2023. DOI: 10.1080/15376494.2023.2227413.
  • M. Turan, E. Uzun Yaylacı, and M. Yaylacı, Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods, Arch. Appl. Mech., vol. 93, no. 4, pp. 1351–1372, 2023. DOI: 10.1007/s00419-022-02332-w.
  • A. Fallah, and M.M. Aghdam, Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation, Eng. Comput., pp. 1–18, 2023. DOI: 10.1007/s00366-023-01799-7.
  • T.T. Truong, J. Lee, and T. Nguyen-Thoi, Multi-objective optimization of multi-directional functionally graded beams using an effective deep feedforward neural network-SMPSO algorithm, Struct. Multidisc. Optim., vol. 63, no. 6, pp. 2889–2918, 2021. DOI: 10.1007/s00158-021-02852-z.
  • Q. Wang, and X. Zhuang, A CNN-based surrogate model of isogeometric analysis in nonlocal flexoelectric problems, Eng. Comput., vol. 39, no. 1, pp. 943–958, 2023. DOI: 10.1007/s00366-022-01717-3.
  • H.Q. Le, T.T. Truong, D. Dinh-Cong, and T. Nguyen-Thoi, A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modal kinetic energy, Front. Struct. Civ. Eng., vol. 15, no. 6, pp. 1453–1479, 2021. DOI: 10.1007/s11709-021-0767-z.
  • A. Alijani, M.K. Abadi, J. Razzaghi, and A. Jamali, Numerical analysis of natural frequency and stress intensity factor in Euler–Bernoulli cracked beam, Acta Mech., vol. 230, no. 12, pp. 4391–4415, 2019. DOI: 10.1007/s00707-019-02492-x.
  • Z. Chi, Z. Jiang, M.M. Kamruzzaman, B.A. Hafshejani, and M. Safarpour, Adaptive momentum-based optimization to train deep neural network for simulating the static stability of the composite structure, Eng. Comput., vol. 38, no. S5, pp. 4027–4049, 2022. DOI: 10.1007/s00366-021-01335-5.
  • M. Petrolo, and E. Carrera, On the use of neural networks to evaluate performances of shell models for composites, Adv. Model. Simul. Eng. Sci., vol. 7, no. 1, pp. 28, 2020. DOI: 10.1186/s40323-020-00169-y.
  • L. Lihua, Simulation physics-informed deep neural network by adaptive Adam optimization method to perform a comparative study of the system, Eng. Comput., vol. 38, no. S2, pp. 1111–1130, 2022. DOI: 10.1007/s00366-021-01301-1.
  • V. Mahesh, V. Mahesh, and S.A. Ponnusami, FEM-ANN approach to predict nonlinear pyro-coupled deflection of sandwich plates with agglomerated porous nanocomposite core and piezo-magneto-elastic facings in thermal environment, Mech. Adv. Mater. Struct., pp. 1–24, 2023. DOI: 10.1080/15376494.2023.2201927.
  • V. Mahesh, Artificial neural network (ANN) based investigation on the static behaviour of piezo-magneto-thermo-elastic nanocomposite sandwich plate with CNT agglomeration and porosity, Int. J. NonLinear Mech., vol. 153, pp. 104406, 2023. DOI: 10.1016/j.ijnonlinmec.2023.104406.
  • J.N. Reddy, 2003. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton.
  • M. Vinyas, A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods, Composites Part B: Engineering, vol. 158, pp. 286–301, 2019. DOI: 10.1016/j.compositesb.2018.09.086.
  • J.M.S. Moita, C.M.M. Soares, and C.A.M. Soares, Analyses of magneto-electro-elastic plates using a higher order finite element model, Compos. Struct., vol. 91, no. 4, pp. 421–426, 2009.
  • J. Chen, H. Chen, E. Pan, and P.R. Heyliger, Modal analysis of magneto-electro-elastic plates using the state-vector approach, J. Sound Vib., vol. 304, no. 3–5, pp. 722–734, 2007. DOI: 10.1016/j.jsv.2007.03.021.