94
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Thermoelastic free vibration of rotating tapered porous functionally graded conical shell based on non-polynomial higher-order shear deformation theory

ORCID Icon, ORCID Icon & ORCID Icon
Received 24 Jun 2023, Accepted 04 Aug 2023, Published online: 23 Aug 2023

References

  • M. Niino, T. Hirai, and R.M. Watanabe, Space application of advance structure materials, J. Soc. Comp. Mat., vol. 13, no. 6, pp. 257–264, 1987. DOI: 10.6089/jscm.13.257.
  • R. Watanabe, and A. Kawasaki, 1990. Overall view of the P/M fabrication of functionally gradient materials, Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan, October 8–9, 1990, pp. 107–113, October 8–9, 1990.
  • X. Zhao and K.M. Liew, Free vibration analysis of functionally graded conical shell panels by a meshless method, Compos. Struct., vol. 93, no. 2, pp. 649–664, 2011. DOI: 10.1016/j.compstruct.2010.08.014.
  • M. Molla-Alipour, M. Shariyat, and M. Shaban, Free vibration analysis of bidirectional functionally graded conical/cylindrical shells and annular plates on nonlinear elastic foundations, based on a unified differential transform analytical formulation, J. Solid Mech., vol. 12, no. 2, pp. 385–400, 2020.
  • A. Das and A. Karmakar, Free vibration characteristics of functionally graded pre-twisted conical shells under rotation, J. Inst. Eng. India. Ser. C., vol. 99, no. 6, pp. 681–692, 2018. DOI: 10.1007/s40032-017-0378-6.
  • X. Zhao, Y.Y. Lee, and K.M. Liew, Free vibration analysis of functionally graded plates using the element-free kp-Ritz method, J. Sound Vib., vol. 319, no. 3–5, pp. 918–939, 2009. DOI: 10.1016/j.jsv.2008.06.025.
  • L. Li and D.G. Zhang, Free vibration analysis of rotating functionally graded rectangular plates, Compos. Struct., vol. 136, pp. 493–504, 2016. DOI: 10.1016/j.compstruct.2015.10.013.
  • H. Guo, X. Ouyang, T. Yang, K.K. Żur, and J.N. Reddy, On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets, Eng. Struct., vol. 249, pp. 113286, 2021. DOI: 10.1016/j.engstruct.2021.113286.
  • S.C. Han, G.R. Lomboy, and K.D. Kim, Mechanical vibration and buckling analysis of FGM plates and shells using a four-node quasi-conforming shell element, Int. J. Str. Stab. Dyn., vol. 08, no. 02, pp. 203–229, 2008. DOI: 10.1142/S0219455408002624.
  • J.C. Monge and J.L. Mantari, 3D elasticity numerical solution for the static behavior of FGM shells, Eng. Struct., vol. 208, pp. 110159, 2020. DOI: 10.1016/j.engstruct.2019.110159.
  • C.T. Loy, K.Y. Lam, and J.N. Reddy, Vibration of functionally graded cylindrical shells, Int. J. Mech. Sci., vol. 41, no. 3, pp. 309–324, 1999. DOI: 10.1016/S0020-7403(98)00054-X.
  • J. Yang and H.S. Shen, Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels, J. Sound Vib., vol. 261, no. 5, pp. 871–893, 2003. DOI: 10.1016/S0022-460X(02)01015-5.
  • M. Rout, S. Pani, and J. Mahakud, A solution to free vibration of rotating pretwisted functionally graded conical shell under nonlinear thermal environments, J. Braz. Soc. Mech. Sci. Eng., vol. 43, no. 6, pp. 285, 2021. DOI: 10.1007/s40430-021-02995-6.
  • F. Alijani, F. Bakhtiari-Nejad, and M. Amabili, Nonlinear vibrations of FGM rectangular plates in thermal environments, Nonlinear Dyn., vol. 66, no. 3, pp. 251–270, 2011. DOI: 10.1007/s11071-011-0049-8.
  • Y. Chen, T. Ye, G. Jin, S. Li, and C. Yang, Vibration analysis of rotating pretwist FG sandwich blades operating in thermal environment, Int. J. Mech. Sci., vol. 205, pp. 106596, 2021. DOI: 10.1016/j.ijmecsci.2021.106596.
  • F.A. Fazzolari, Modal characteristics of P-and S-FGM plates with temperature-dependent materials in thermal environment, J. Therm. Stresses., vol. 39, no. 7, pp. 854–873, 2016. DOI: 10.1080/01495739.2016.1189772.
  • X.L. Huang and H.S. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermal environments, Int. J. Solids Struct., vol. 41, no. 9–10, pp. 2403–2427, 2004. DOI: 10.1016/j.ijsolstr.2003.11.012.
  • S. Parida and S.C. Mohanty, Free vibration analysis of rotating functionally graded material plate under nonlinear thermal environment using higher order shear deformation theory, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 6, pp. 2056–2073, 2019. DOI: 10.1177/0954406218777535.
  • M. Talebitooti, Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends, Mech. Adv. Mater. Struct., vol. 25, no. 2, pp. 155–165, 2018. DOI: 10.1080/15376494.2016.1255809.
  • S. Parida and S.C. Mohanty, Thermoelastic vibration analysis of functionally graded skew plate using nonlinear finite element method, J. Therm. Stresses., vol. 40, no. 9, pp. 1111–1133, 2017. DOI: 10.1080/01495739.2017.1290513.
  • S.K. Sah, and A. Ghosh, Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates, Compos. Struct., vol. 279, pp. 114795, 2022. DOI: 10.1016/j.compstruct.2021.114795.
  • M. Rezaiee-Pajand and A.R. Masoodi, Hygro-thermo-elastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels, Mech. Adv. Mater. Struct., vol. 29, no. 4, pp. 594–612, 2022. DOI: 10.1080/15376494.2020.1780524.
  • L. Zhou, A novel similitude method for predicting natural frequency of FG porous plates under thermal environment, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6786–6802, 2022. DOI: 10.1080/15376494.2021.1985197.
  • A.S. Rezaei, A.R. Saidi, M. Abrishamdari, and M.P. Mohammadi, Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach, Thin. Walled Struct., vol. 120, pp. 366–377, 2017. DOI: 10.1016/j.tws.2017.08.003.
  • F. Rahmani, R. Kamgar, and R. Rahgozar, Optimum material distribution of porous functionally graded plates using Carrera unified formulation based on isogeometric analysis, Mech. Adv. Mater. Struct., vol. 29, no. 20, pp. 2927–2941, 2022. DOI: 10.1080/15376494.2021.1881845.
  • M. Amoozgar and L. Gelman, Vibration analysis of rotating porous functionally graded material beams using exact formulation, J. Vib. Control., vol. 28, no. 21–22, pp. 3195–3206, 2022. DOI: 10.1177/10775463211027883.
  • H. Wu, J. Yang, and S. Kitipornchai, Mechanical analysis of functionally graded porous structures: a review, Int. J. Str. Stab. Dyn., vol. 20, no. 13, pp. 2041015, 2020. DOI: 10.1142/S0219455420410151.
  • F. Zare Jouneghani, R. Dimitri, M. Bacciocchi, and F. Tornabene, Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory, Appl. Sci., vol. 7, no. 12, pp. 1252, 2017. DOI: 10.3390/app7121252.
  • V. Kumar, S.J. Singh, V.H. Saran, and S.P. Harsha, Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak’s foundation, Eur J. Mech. A/Solids, vol. 85, pp. 104124, 2021. DOI: 10.1016/j.euromechsol.2020.104124.
  • H.N. Thi, Thermal vibration analysis of functionally graded porous plates with variable thickness resting on elastic foundations using finite element method, Mech. Based Des. Struct. Mach., pp. 1–29, 2022. DOI: 10.1080/15397734.2022.2047719.
  • T.T. Tran, Q.H. Pham, and T. Nguyen-Thoi, Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method, Defence Technology., vol. 17, no. 3, pp. 971–986, 2021. DOI: 10.1016/j.dt.2020.06.001.
  • C. Mingfei, Y. Tiangui, Z. Jianhua, J. Guoyong, Z. Yantao, X. Yaqiang, M. Xianglong, and L. Zhigang, Isogeometric three-dimensional vibration of variable thickness parallelogram plates with in-plane functionally graded porous materials, Int. J. Mech. Sci., vol. 169, pp. 105304, 2020. DOI: 10.1016/j.ijmecsci.2019.105304.
  • S.R. Farsani, Z. Saadat, R.A. Jafari-Talookolaei, R. Tikani, and S. Ziaei-Rad, Free vibrational analysis of variable thickness plate made of functionally graded porous materials using internal supports in contact with bounded fluid, Ocean Eng., vol. 263, pp. 112335, 2022. DOI: 10.1016/j.oceaneng.2022.112335.
  • C.T. Binh, N. Van Long, T.M. Tu, and P.Q. Minh, Nonlinear vibration of functionally graded porous variable thickness toroidal shell segments surrounded by elastic medium including the thermal effect, Compos. Struct., vol. 255, pp. 112891, 2021. DOI: 10.1016/j.compstruct.2020.112891.
  • T.H. Quoc, D.T. Huan, and H.T. Phuong, Vibration characteristics of rotating functionally graded circular cylindrical shell with variable thickness under thermal environment, Int. J. Press. Vessels Pip., vol. 193, pp. 104452, 2021. DOI: 10.1016/j.ijpvp.2021.104452.
  • J.S. Fang, and D. Zhou, Free vibration analysis of rotating Mindlin plates with variable thickness, Int. J. Str. Stab. Dyn., vol. 17, no. 04, pp. 1750046, 2017. DOI: 10.1142/S0219455417500468.
  • S. Sreenivasamurthy, and V. Ramamurti, Coriolis effect on the vibration of flat rotating low aspect ratio cantilever plates, J. Strain Anal. Eng. Des., vol. 16, no. 2, pp. 97–106, 1981. DOI: 10.1243/03093247V162097.
  • M. Rout, S.S. Hota, and A. Karmakar, Free vibration characteristics of delaminated composite pretwisted stiffened cylindrical shell, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 232, no. 4, pp. 595–611, 2018. DOI: 10.1177/0954406216686389.
  • K.M. Liew, C.W. Lim, and L.S. Ong, Vibration of pretwisted cantilever shallow conical shells, Int. J. Solids Struct., vol. 31, no. 18, pp. 2463–2476, 1994. DOI: 10.1016/0020-7683(94)90031-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.