119
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Interaction of shock wave with closed cell foams: Effect of foam material, microstructure, and specimen configuration

ORCID Icon, &
Received 07 Jul 2023, Accepted 14 Aug 2023, Published online: 06 Sep 2023

References

  • K. Senol, and A. Shukla, Dynamic response of closed cell PVC foams subjected to underwater shock loading, Int. J. Impact Eng., vol. 130, pp. 214–225, 2019. DOI: 10.1016/j.ijimpeng.2019.04.020.
  • V.R. Feldgun, Y.S. Karinski, and D.Z. Yankelevsky, A two-phase model to simulate the 1-D shock wave propagation in porous metal foam, Int. J. Impact Eng., vol. 82, pp. 113–129, 2015. DOI: 10.1016/j.ijimpeng.2015.03.012.
  • Y. Zhou, T. Wang, W. Zhu, X.-b. Bian, and G.-y. Huang, Evaluation of blast mitigation effects of hollow cylindrical barriers based on water and foam, Compos. Struct., vol. 282, pp. 115016, 2022. DOI: 10.1016/j.compstruct.2021.115016.
  • K. Bouchahdane, N. Ouelaa, and A. Belaadi, Static and fatigue compression behaviour of conventional and auxetic open-cell foam, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6154–6167, 2022. DOI: 10.1080/15376494.2021.1972496.
  • B. Song, W.W. Chen, and W.Y. Lu, Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam, Int. J. Mech. Sci., vol. 49, no. 12, pp. 1336–1343, 2007. DOI: 10.1016/j.ijmecsci.2007.04.003.
  • C. Ling, J. Ivens, P. Cardiff, and M.D. Gilchrist, Deformation response of EPS foam under combined compression-shear loading. Part I: experimental design and quasi-static tests, Int. J. Mech. Sci., vol. 144, pp. 480–489, 2018. DOI: 10.1016/j.ijmecsci.2018.06.014.
  • P. Ren, Q. Tao, L. Yin, Y. Ma, J. Wu, W. Zhao, Z. Mu, Z. Guo, and Z. Zhao, High-velocity impact response of metallic sandwich structures with PVC foam core, Int. J. Impact Eng., vol. 144, pp. 103657, 2020. DOI: 10.1016/j.ijimpeng.2020.103657.
  • H.M. Lee, D.H. Kim, D.-Y. Kim, M.S. Kim, J. Park, and G.H. Yoon, Enhancement of vibration attenuation and shock absorption in composite sandwich structures with porous foams and surface patterns, Compos. Struct., vol. 295, pp. 115755, 2022. DOI: 10.1016/j.compstruct.2022.115755.
  • H. Liu, J. Yang, and H. Liu, Impact response of low-density foam impinging onto viscoelastic bar: a theoretical analysis, Compos. Struct., vol. 200, pp. 47–58, 2018. DOI: 10.1016/j.compstruct.2018.05.098.
  • N.P. Daphalapurkar, J.C. Hanan, N.B. Phelps, H. Bale, and H. Lu, Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression, Mech. Adv. Mater. Struct., vol. 15, no. 8, pp. 594–611, 2008. DOI: 10.1080/15376490802470523.
  • B.D. Henshall, The use of multiple diaphragms in shock tubes, J. Aeronautical Research Council. N. p. 1955. URL: https://www.osti.gov/biblio/4314723
  • R.A. Alpher, and D.R. White, Flow in shock tubes with area change at the diaphragm section, J. Fluid Mech., vol. 3, no. 05, pp. 457–470, 1958. DOI: 10.1017/S0022112058000124.
  • X. Li, P. Zhang, L. Shiqiang, Z. Wang, and G. Wu, Dynamic response of aluminum honeycomb sandwich panels under foam projectile impact, Mech. Adv. Mater. Struct., vol. 25, no. 8, pp. 637–646, 2018. DOI: 10.1080/15376494.2017.1308595.
  • J. Cirne, R. Dormeval, et al., S. Ouellet, D. Frost, and A. Bouamoul, Using a shock tube to predict the response of polymeric foam to a blast loading., J. Phys. IV., vol. 134, pp. 783–787, 2006.
  • M. Kazemi, Experimental investigation on the energy absorption characteristics of sandwich panels with layering of foam core under quasi-static punch loading, Mech. Adv. Mater. Struct., vol. 29, no. 21, pp. 3067–3075, 2022. DOI: 10.1080/15376494.2021.1885770.
  • Z. Zhao, and L. Jing, The response of clamped sandwich panels with layered-gradient aluminum foam cores to foam projectile impact, Mech. Adv. Mater. Struct., vol. 27, no. 9, pp. 744–753, 2020. DOI: 10.1080/15376494.2018.1495790.
  • G.A. Christou, L.R. Young, R. Goel, A.P. Vechart, and A. Jérusalem, Shock attenuation of PMMA sandwich panels filled with soda-lime glass beads: a fluid-structure interaction continuum model simulation, Int. J. Impact Eng., vol. 47, pp. 48–59, 2012. DOI: 10.1016/j.ijimpeng.2012.03.003.
  • N. Ye, W. Zhang, D. Li, W. Huang, W. Xie, X. Huang, and X. Jiang, Dynamic response and failure of sandwich plates with PVC foam core subjected to impulsive loading, Int. J. Impact Eng., vol. 109, pp. 121–130, 2017. DOI: 10.1016/j.ijimpeng.2017.06.005.
  • Y. Xin, H. Yan, S. Cheng, and H. Li, Drop weight impact tests on composite sandwich panel of aluminum foam and epoxy resin, Mech. Adv. Mater. Struct., vol. 28, no. 4, pp. 343–356, 2021. DOI: 10.1080/15376494.2018.1564853.
  • G.W. Ma, and Z.Q. Ye, Analysis of foam claddings for blast alleviation, Int. J. Impact Eng., vol. 34, no. 1, pp. 60–70, 2007. DOI: 10.1016/j.ijimpeng.2005.10.005.
  • P. Wang, S. Xu, and S. Hu, Experimental and numerical study of the effect of micro-structure on the rate-sensitivity of cellular foam, Mech. Adv. Mater. Struct., vol. 23, no. 8, pp. 888–895, 2016. DOI: 10.1080/15376494.2015.1047477.
  • B.W. Skews, M.D. Atkins, and M.W. Seitz, The impact of a shock wave on porous compressible foams, J. Fluid Mech., vol. 253, no. 1, pp. 245–265, 1993. DOI: 10.1017/S0022112093001788.
  • M.D. Atkins, Shock wave interaction with porous compressible foams, D. University of the Witwatersrand. 1992. URL: http://hdl.handle.net/10539/21333.
  • R. Monti, Normal shock wave reflection on deformable solid walls, Meccanica, vol. 5, no. 4, pp. 285–296, 1970. DOI: 10.1007/BF02145653.
  • B.E. Gel’fand, S.A. Gubin, S.M. Kogarko, and O.E. Popov, Investigation of the special characteristics of the propagation and reflection of pressure waves in a porous medium, J. Appl. Mech. Tech. Phys., vol. 16, no. 6, pp. 897–900, 1976. DOI: 10.1007/BF00852818.
  • L. Gvozdeva, and Y.M. Faresov, Calculating the parameters of steady shock waves in porous compressible media, Zh. Tekh. Fiz., vol. 55, no. 4, pp. 773–775, 1985.
  • L.G. Gvozdeva, I.M. Faresov, J. Brossard, and N. Charpentier, Normal shock wave reflection on porous compressible material, Dynamics of Explosions; International Colloquium on Dynamics of Explosions and Reactive Systems, August 4–9, Berkeley, CA, 1985.
  • L.G. Gvozdeva, V.N. Lyakhov, D.K. Raevskii, and Y.M. Faresov, Shock-wave propagation in a gas and a porous medium, Combust. Explos. Shock Waves, vol. 23, no. 4, pp. 491–495, 1988. DOI: 10.1007/BF00749312.
  • S. Ouellet, D. Frost, and A. Bouamoul, Using a shock tube to predict the response of polymeric foam to a blast loading, J. Phys. IV France, vol. 134, pp. 783–787, 2006. DOI: 10.1051/jp4:2006134121.
  • M.W. Seitz, and B.W. Skews, Effect of compressible foam properties on pressure amplification during shock wave impact, Shock Waves, vol. 15, no. 3–4, pp. 177–197, 2006. DOI: 10.1007/s00193-006-0033-2.
  • T.S. Hattingh, and B.W. Skews, Experimental investigation of the interaction of shock waves with textiles, Shock Waves, vol. 11, no. 2, pp. 115–123, 2001. DOI: 10.1007/PL00004064.
  • O. Igra, and J.P. Jiang, Simulation of shock wave interaction with porous compressible foam, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., vol. 223, no. 3, pp. 297–306, 2009. DOI: 10.1243/09544100JAERO386.
  • A. Britan, M. Liverts, H. Shapiro, and G. Ben-Dor, Blast wave mitigation by a particulate foam barrier, Transp. Porous Med., vol. 93, no. 2, pp. 283–292, 2012. DOI: 10.1007/s11242-011-9865-z.
  • E. Del Prete, A. Chinnayya, L. Domergue, A. Hadjadj, and J.-F. Haas, Blast wave mitigation by dry aqueous foams, Shock Waves, vol. 23, no. 1, pp. 39–53, 2013. DOI: 10.1007/s00193-012-0400-0.
  • S. Honghui, K. Kawai, M. Itoh, Y. Hongru, and J. Zonglin, The interaction between shock waves and foam in a shock tube, Acta Mech. Sin., vol. 18, no. 3, pp. 288–301, 2002. DOI: 10.1007/BF02487956.
  • M.D. Goel, P. Altenhofer, V.A. Matsagar, A.K. Gupta, C. Mundt, and S. Marburg, Interaction of a shock wave with a closed cell aluminum metal foam, Combust. Explos. Shock Waves, vol. 51, no. 3, pp. 373–380, 2015. DOI: 10.1134/S0010508215030144.
  • M.R. Baer, A numerical study of shock wave reflections on low density foam, Shock Waves, vol. 2, no. 2, pp. 121–124, 1992. DOI: 10.1007/BF01415901.
  • H. Jeon, J.R. Gross, S. Estabrook, S. Koumlis, Q. Wan, G.R. Khanolkar, X. Tao, D.M. Mensching, E.J. Lesnick, and V. Eliasson, Shock wave attenuation using foam obstacles: does geometry matter, Aerospace, vol. 2, no. 2, pp. 353–375, 2015. DOI: 10.3390/aerospace2020353.
  • I.S. Sandhu, A. Sharma, Prince, M.K. Singh, R. Kumari, P.S. Alegaonkar, and D.R. Saroha, Study of blast wave pressure modification through rubber foam. Proc. Eng., vol. 173, pp. 570–576, 2017. DOI: 10.1016/j.proeng.2016.12.099.
  • O. Elfar, R. Rashad, and H. Megahed, Process parameters optimization for friction stir welding of pure aluminium to brass (CuZn30) using Taguchi technique, MATEC Web Conf., vol. 43, pp. 03005, 2016. DOI: 10.1051/matecconf/20164303005.
  • J. Freudenberger, J. Göllner, M. Heilmaier, G. Mook, H. Saage, V. Srivastava, and U. Wendt, Materials Science and Engineering, in Springer Handbook of Mechanical Engineering, K.-H. Grote and E.K. Antonsson, Editors., Springer, Berlin, Heidelberg, Germany, 2009. pp. 73–222.
  • H. Aretz, S. Keller, R. Vogt, and O. Engler, Modelling of ductile failure in aluminium sheet forming simulation, Int. J. Mater. Form., vol. 4, no. 2, pp. 163–182, 2011. DOI: 10.1007/s12289-010-1021-8.
  • S.L. Zang, J. Liang, and C. Guo, A constitutive model for spring-back prediction in which the change of Young’s modulus with plastic deformation is considered, Int. J. Mach. Tools Manuf., vol. 47, no. 11, pp. 1791–1797, 2007. DOI: 10.1016/j.ijmachtools.2007.01.003.
  • O.E. Petel, F.X. Jetté, S. Goroshin, D.L. Frost, and S. Ouellet, Blast wave attenuation through a composite of varying layer distribution, Shock Waves, vol. 21, no. 3, pp. 215–224, 2011. DOI: 10.1007/s00193-010-0295-6.
  • B.W. Skews, The reflected pressure field in the interaction of weak shock waves with a compressible foam, Shock Waves, vol. 1, no. 3, pp. 205–211, 1991. DOI: 10.1007/BF01413795.
  • J.G. Nerenberg, Blast wave loading of polymeric foams, D. McGill University. 2000. URL: https://escholarship.mcgill.ca/concern/theses/8w32r770k.
  • B. Koohbor, A. Kidane, and W. Y. Lu, Effect of specimen size, compressibility and inertia on the response of rigid polymer foams subjected to high velocity direct impact loading, Int. J. Impact Eng., vol. 98, pp. 62–74, 2016. DOI: 10.1016/j.ijimpeng.2016.08.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.