181
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Thermo-elastic buckling behaviors of advanced fluid-infiltrated porous shells integrated with GPLs-reinforced nanocomposite patches

ORCID Icon, , , & ORCID Icon
Received 18 Jul 2023, Accepted 18 Aug 2023, Published online: 28 Aug 2023

References

  • M. Esfandiari, H. Haghighi, and G. Urgessa, Machine learning-based optimum reinforced concrete design for progressive collapse, EJSE, vol. 23, no. 2, pp. 1–8, 2023. DOI: 10.56748/ejse.233642.
  • M. Izadifar, N. Luo, M.Y. Abu-Farsakh, and S. Chen, Performance evaluation of design methods for geosynthetic-reinforced pile-supported embankments, Transp. Res. Rec. J. Transp. Res. Board., 2023. DOI: 10.1177/03611981231165994.
  • M. Afzali, M. Farrokh, and E. Carrera, Nonlinear thermal post-buckling analysis of rectangular FG plates using CUF, Compos. Struct., vol. 321, p. 117282, 2023. DOI: 10.1016/j.compstruct.2023.117282.
  • Z.-Z. Wang, T. Wang, Y. Ding, and L. Ma, A simple refined plate theory for the analysis of bending, buckling and free vibration of functionally graded porous plates reinforced by graphene platelets, Mech. Adv. Mater. Struct., pp. 1–18, 2022. DOI: 10.1080/15376494.2022.2141383.
  • S. Amir, E.M.R. Bidgoli, and E. Arshid, Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT, Mech. Adv. Mater. Struct., vol. 27, no. 8, pp. 605–619, 2020. DOI: 10.1080/15376494.2018.1487612.
  • E. Detournay, and A.H.-D. Cheng, Fundamentals of poroelasticity, Anal. Des. Methods, pp. 113–171, 1993. DOI: 10.1016/B978-0-08-040615-2.50011-3.
  • V. Farhangi, M. Zadehmohamad, A. Monshizadegan, M.A. Izadifar, M.J. Moradi, and H. Dabiri, Effects of geogrid reinforcement on the backfill of integral bridge abutments, Buildings., vol. 13, no. 4, pp. 853, 2023. DOI: 10.3390/buildings13040853.
  • A. Ikbarieh, M.A. Izadifar, M.Y. Abu-Farsakh, and G.Z. Voyiadjis, A parametric study of embankment supported by geosynthetic reinforced load transfer platform and timber piles tip on sand, Transp. Geotech., vol. 38, pp. 100901, 2023. DOI: 10.1016/j.trgeo.2022.100901.
  • M. Kianezhad, M. Youzi, M. Vaezi, and H. Nejat Pishkenari, Rectilinear motion of carbon nanotube on gold surface, Int. J. Mech. Sci., vol. 217, pp. 107026, 2022. DOI: 10.1016/j.ijmecsci.2021.107026.
  • N.D. Dat, N. Van Thanh, V. MinhAnh, and N.D. Duc, Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer, Mech. Adv. Mater. Struct., vol. 29, no. 10, pp. 1431–1448, 2022. DOI: 10.1080/15376494.2020.1822476.
  • M. Shakir, M. Talha, and A.D. Dileep, Machine learning based probabilistic model for free vibration analysis of functionally graded graphene nanoplatelets reinforced porous plates, Mech. Adv. Mater. Struct., pp. 1–14, 2023. DOI: 10.1080/15376494.2023.2225051.
  • M. Kianezhad, M. Youzi, M. Vaezi, and H. Nejat Pishkenari, Unidirectional motion of C60-based nanovehicles using hybrid substrates with temperature gradient, Sci Rep., vol. 13, no. 1, pp. 1100, 2023. DOI: 10.1038/s41598-023-28245-4.
  • E. Sobhani, A.R. Masoodi, O. Civalek, and A.R. Ahmadi-Pari, Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells, Aerosp. Sci. Technol., vol. 120, pp. 107257, 2022. DOI: 10.1016/j.ast.2021.107257.
  • E. Sobhani, and M. Avcar, The influence of various nanofiller materials (CNTs, GNPs, and GOPs) on the natural frequencies of Nanocomposite Cylindrical Shells: a comparative study, Mater. Today Commun., vol. 33, pp. 104547, 2022. DOI: 10.1016/j.mtcomm.2022.104547.
  • M.C. Trinh, and S.E. Kim, A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis, Aerosp. Sci. Technol., vol. 94, pp. 105356, 2019. DOI: 10.1016/j.ast.2019.105356.
  • C. Zhu, X. Fang, and G. Nie, Nonlinear free and forced vibration of porous piezoelectric doubly-curved shells based on NUEF model, Thin-Walled Struct., vol. 163, pp. 107678, 2021. DOI: 10.1016/j.tws.2021.107678.
  • J. Zhao, F. Xie, A. Wang, C. Shuai, J. Tang, and Q. Wang, Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method, Compos. Part B Eng., vol. 157, pp. 219–238, 2019. DOI: 10.1016/j.compositesb.2018.08.087.
  • A. Wang, H. Chen, Y. Hao, and W. Zhang, Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets, Results Phys., vol. 9, pp. 550–559, 2018. DOI: 10.1016/j.rinp.2018.02.062.
  • J.J. Mao, and W. Zhang, Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation, Compos. Struct., vol. 203, pp. 551–565, 2018. DOI: 10.1016/j.compstruct.2018.06.076.
  • J.J. Mao, and W. Zhang, Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces, Compos. Struct., vol. 216, pp. 392–405, 2019. DOI: 10.1016/j.compstruct.2019.02.095.
  • Y. Wang, and W. Zhang, On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams, Compos. Struct., vol. 296, pp. 115880, 2022. DOI: 10.1016/j.compstruct.2022.115880.
  • R. Talebitooti, and M.R. Zarastvand, The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell, Aerosp. Sci. Technol., vol. 78, pp. 157–170, 2018. DOI: 10.1016/j.ast.2018.03.010.
  • H. Aminipour, M. Janghorban, and O. Civalek, Analysis of functionally graded doubly-curved shells with different materials via higher order shear deformation theory, Compos. Struct., vol. 251, pp. 112645, 2020. DOI: 10.1016/j.compstruct.2020.112645.
  • A.S. Sayyad, and Y.M. Ghugal, Static and free vibration analysis of doubly-curved functionally graded material shells, Compos. Struct., vol. 269, pp. 114045, 2021. DOI: 10.1016/j.compstruct.2021.114045.
  • A. Rachid, D. Ouinas, A. Lousdad, F.Z. Zaoui, B. Achour, H. Gasmi, T.A. Butt, and A. Tounsi, Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs, Thin-Walled Struct., vol. 172, pp. 108783, 2022. DOI: 10.1016/j.tws.2021.108783.
  • B. Karami, D. Shahsavari, and M. Janghorban, On the dynamics of porous doubly-curved nanoshells, Int. J. Eng. Sci., vol. 143, pp. 39–55, 2019. DOI: 10.1016/j.ijengsci.2019.06.014.
  • H. Ahmadi, A. Bayat, and N.D. Duc, Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method, Compos. Struct., vol. 256, pp. 113090, 2021. DOI: 10.1016/j.compstruct.2020.113090.
  • Y. Xue, G. Jin, C. Zhang, X. Han, and J. Chen, Free vibration analysis of functionally graded porous cylindrical panels and shells with porosity distributions along the thickness and length directions, Thin-Walled Struct., vol. 184, pp. 110448, 2023. DOI: 10.1016/j.tws.2022.110448.
  • P.H. Cong, and N.D. Duc, Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments, Thin-Walled Struct., vol. 163, pp. 107748, 2021. DOI: 10.1016/j.tws.2021.107748.
  • A.R. Setoodeh, M. Shojaee, and P. Malekzadeh, Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core, Compos. Part B Eng., vol. 165, pp. 798–822, 2019. DOI: 10.1016/j.compositesb.2019.01.022.
  • M. Karimiasl, F. Ebrahimi, and V. Mahesh, Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell, Thin-Walled Struct., vol. 143, pp. 106152, 2019. DOI: 10.1016/j.tws.2019.04.044.
  • V.Q. Duong, N.D. Tran, D.T. Luat, and D. Van Thom, Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory, Structures., vol. 44, pp. 828–850, 2022. DOI: 10.1016/j.istruc.2022.08.039.
  • S.W. Yang, Y.X. Hao, W. Zhang, L. Yang, and L.T. Liu, Free vibration and buckling of eccentric rotating FG-GPLRC cylindrical shell using first-order shear deformation theory, Compos. Struct., vol. 263, pp. 113728, 2021. DOI: 10.1016/j.compstruct.2021.113728.
  • H. Ma, P. Jiao, H. Li, Z. Cheng, and Z. Chen, Buckling analyses of thin-walled cylindrical shells subjected to multi-region localized axial compression: experimental and numerical study, Thin-Walled Struct., vol. 183, pp. 110330, 2023. DOI: 10.1016/j.tws.2022.110330.
  • Y. Gui, and R. Wu, Buckling analysis of embedded thermo-magneto-electro-elastic nano cylindrical shell subjected to axial load with nonlocal strain gradient theory, Mech. Res. Commun., vol. 128, pp. 104043, 2023. DOI: 10.1016/j.mechrescom.2023.104043.
  • T.Q. Quan, N.H. Cuong, and N.D. Duc, Nonlinear buckling and post-buckling of eccentrically oblique stiffened sandwich functionally graded double curved shallow shells, Aerosp. Sci. Technol., vol. 90, pp. 169–180, 2019. DOI: 10.1016/j.ast.2019.04.037.
  • R. Jahangiri, M. Rezaee, and H. Manafi, Nonlinear and chaotic vibrations of FG double curved sandwich shallow shells resting on visco-elastic nonlinear Hetenyi foundation under combined resonances, Compos. Struct., vol. 295, pp. 115721, 2022. DOI: 10.1016/j.compstruct.2022.115721.
  • Z. Jing, X. Li, Q. Sun, K. Liang, Y. Zhang, and L. Duan, A 2D-sampling optimization method for buckling layup design of doubly-curved laminated composite shallow shells, Compos. Struct., vol. 297, pp. 115934, 2022. DOI: 10.1016/j.compstruct.2022.115934.
  • V.R. Kar, and S.K. Panda, Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression, Int. J. Mech. Sci., vol. 115-116, pp. 318–324, 2016. DOI: 10.1016/j.ijmecsci.2016.07.014.
  • H. Ma, W. Sun, D. Du, X. Liu, and H. Liu, Nonlinear vibration analysis of double cylindrical shells coupled structure with bolted connection and partially attached constrained layer damping, Int. J. Mech. Sci., vol. 223, pp. 107270, 2022. DOI: 10.1016/j.ijmecsci.2022.107270.
  • Z. Hu, C. Zhou, X. Zheng, Z. Ni, and R. Li, Free vibration of non-Lévy-type functionally graded doubly curved shallow shells: new analytic solutions, Compos. Struct., vol. 304, pp. 116389, 2023. DOI: 10.1016/j.compstruct.2022.116389.
  • B. Badarloo, S. Tayebikhorami, S.M. Mirfatah, H. Salehipour, and O. Civalek, Nonlinear forced vibration analysis of laminated composite doubly-curved shells enriched by nanocomposites incorporating foundation and thermal effects, Aerosp. Sci. Technol., vol. 127, pp. 107717, 2022. DOI: 10.1016/j.ast.2022.107717.
  • E. Taati, F. Fallah, and M.T. Ahmadian, Subsonic and supersonic flow-induced vibration of sandwich cylindrical shells with FG-CNT reinforced composite face sheets and metal foam core, Int. J. Mech. Sci., vol. 215, pp. 106918, 2022. DOI: 10.1016/j.ijmecsci.2021.106918.
  • X. Sun, R. Gao, and Y. Zhang, Spectral stochastic isogeometric analysis of bending and free vibration of porous functionally graded plates, Appl. Math. Model., vol. 116, pp. 711–734, 2023. DOI: 10.1016/j.apm.2022.12.017.
  • R. Moradi-Dastjerdi, and K. Behdinan, Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers, Appl. Math. Model., vol. 96, pp. 66–79, 2021. DOI: 10.1016/j.apm.2021.03.013.
  • Y. Wang, H. Liu, W. Zhang, and Y. Liu, A size-dependent shear deformable computational framework for transient response of GNP-reinforced metal foam cylindrical shells subjected to localized impulsive loads, Appl. Math. Model., vol. 109, pp. 578–598, 2022. DOI: 10.1016/j.apm.2022.05.018.
  • X. Xu, E. Carrera, H. Yang, E. Daneshkhah, and R. Augello, Evaluation of stiffeners effects on buckling and post-buckling of laminated panels, Aerosp. Sci. Technol., vol. 123, pp. 107431, 2022. DOI: 10.1016/j.ast.2022.107431.
  • E. Carrera, and D. Scano, Finite elements based on Jacobi shape functions for the free vibration analysis of beams, plates, and shells, Mech. Adv. Mater. Struct., pp. 1–9, 2023. DOI: 10.1080/15376494.2023.2219438.
  • M. Haboussi, A. Sankar, and M. Ganapathi, Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps, Mech. Adv. Mater. Struct., vol. 28, no. 2, pp. 127–140, 2021. DOI: 10.1080/15376494.2018.1549296.
  • E. Arshid, M.J. Momeni Nia, M.A. Ghorbani, Ö. Civalek, and A. Kumar, On the poroelastic vibrations of lightweight FGSP doubly-curved shells integrated with GNPs-reinforced composite coatings in thermal atmospheres, Appl. Math. Model., vol. 124, pp. 122–141, 2023. DOI: 10.1016/j.apm.2023.07.036.
  • L.L. Ren, W. Zhang, and Y.F. Zhang, Dynamic Snap-Through and nonlinear vibrations of bistable asymmetric Cross-Ply composite laminated cantilever shell under external excitation, Mech. Syst. Signal Process., vol. 195, pp. 110193, 2023. DOI: 10.1016/j.ymssp.2023.110193.
  • M.A. Biot, Theory of buckling of a porous slab and its thermoelastic analogy, J. Appl. Mech. Trans. ASME., vol. 31, no. 2, pp. 194–198, 1964. DOI: 10.1115/1.3629586.
  • M. Arefi, and A.M. Zenkour, Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin–Voigt viscoelastic nanoplate and two piezoelectric layers, Acta Mech., vol. 228, no. 2, pp. 475–493, 2017. DOI: 10.1007/s00707-016-1716-0.
  • A.G. Chanda, and D. Punera, Porosity-dependent free vibration and transient responses of functionally graded composite plates employing higher order thickness stretching model, Mech. Adv. Mater. Struct., pp. 1–26, 2022. DOI: 10.1080/15376494.2022.2138652.
  • E. Arshid, S. Amir, and A. Loghman, On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects, Acta Mech., vol. 234, no. 9, pp. 4035–4076, 2023. DOI: 10.1007/s00707-023-03593-4.
  • E. Arshid, S. Amir, and A. Loghman, Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs, Archiv.Civ.Mech.Eng., vol. 23, no. 2, pp. 100, 2023. DOI: 10.1007/s43452-023-00624-8.
  • W. Zhang, C. Wang, and Y. Wang, Thermo-mechanical analysis of porous functionally graded graphene reinforced cylindrical panels using an improved third order shear deformable model, Appl. Math. Model., vol. 118, pp. 453–473, 2023. DOI: 10.1016/j.apm.2023.01.026.
  • E. Arshid, S. Amir, and A. Loghman, Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT, Int. J. Mech. Sci., vol. 180, no. March, pp. 105656, 2020. DOI: 10.1016/j.ijmecsci.2020.105656.
  • S. Amir, E. Arshid, and M.R. Ghorbanpour Arani, Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads, Smart Struct. Syst., vol. 23, no. 5, pp. 429–447, 2019. DOI: 10.12989/sss.2019.23.5.429.
  • D. Shahsavari, B. Karami, H.R. Fahham, and L. Li, On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory, Acta Mech., vol. 229, no. 11, pp. 4549–4573, 2018. DOI: 10.1007/s00707-018-2247-7.
  • Q. Li, D. Wu, X. Chen, L. Liu, Y. Yu, and W. Gao, Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation, Int. J. Mech. Sci., vol. 148, pp. 596–610, 2018. DOI: 10.1016/j.ijmecsci.2018.09.020.
  • M.C. Kiran, Thermal and hygrothermal buckling characteristics of porous magneto-electro-elastic skewed plates using third-order shear deformation theory, Mech. Adv. Mater. Struct., pp. 1–16, 2023. DOI: 10.1080/15376494.2023.2227185.
  • R. Zhong, B. Qin, Q. Wang, W. Shao, and C. Shuai, Prediction of the in-plane vibration behavior of porous annular plate with porosity distributions in the thickness and radial directions, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4206–4223, 2022. DOI: 10.1080/15376494.2021.1922960.
  • E. Arshid, and S. Amir, Size-dependent vibration analysis of fluid-infiltrated porous curved microbeams integrated with reinforced functionally graded graphene platelets face sheets considering thickness stretching effect, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 235, no. 5, pp. 1077–1099, 2021. DOI: 10.1177/1464420720985556.
  • R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. appl. Mech., vol. 18, no. 1, pp. 31–38, 1951. DOI: 10.1115/1.4010217.
  • E.M.R. Bidgoli, M. Arefi, and M. Mohammadimehr, Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers, Mech. Based Des. Struct. Mach., vol. 50, no. 12, pp. 4409–4440, 2022. DOI: 10.1080/15397734.2020.1836969.
  • Y. Yan, B. Liu, Y. Xing, E. Carrera, and A. Pagani, Free vibration analysis of variable stiffness composite laminated beams and plates by novel hierarchical differential quadrature finite elements, Compos. Struct., vol. 274, pp. 114364, 2021. DOI: 10.1016/j.compstruct.2021.114364.
  • V. Jain, and R. Kumar, Geometrically nonlinear dynamic analysis of a damped porous microplate resting on elastic foundations under transverse patch loadings, Mech. Adv. Mater. Struct., pp. 1–24, 2023. DOI: 10.1080/15376494.2023.2216273.
  • K. Foroutan, E. Carrera, and H. Ahmadi, Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations, Eur. J. Mech. A/Solids., vol. 85, pp. 104107, 2021. DOI: 10.1016/j.euromechsol.2020.104107.
  • L. Zhou, A novel similitude method for predicting natural frequency of FG porous plates under thermal environment, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6786–6802, 2022. DOI: 10.1080/15376494.2021.1985197.
  • M. Afzali, M. Farrokh, and E. Carrera, Thermal buckling loads of rectangular FG plates with temperature-dependent properties using Carrera Unified Formulation, Compos. Struct., vol. 295, pp. 115787, 2022. DOI: 10.1016/j.compstruct.2022.115787.
  • P.M. Vuong, and N.D. Duc, Nonlinear buckling and post-buckling behavior of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads, Aerosp. Sci. Technol., vol. 106, pp. 106084, 2020. DOI: 10.1016/j.ast.2020.106084.
  • M. Mohammadimehr, E. Arshid, S.M.A.R. Alhosseini, S. Amir, and M.R.G. Arani, Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation, Struct. Eng. Mech., vol. 70, no. 6, pp. 683–702, 2019. DOI: 10.12989/sem.2019.70.6.683.
  • P. Tan, N. Nguyen-Thanh, T. Rabczuk, and K. Zhou, Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach, Compos. Struct., vol. 198, pp. 35–50, 2018. DOI: 10.1016/j.compstruct.2018.05.012.
  • D.T. Huan, T.M. Tu, and T.H. Quoc, Analytical solutions for bending, buckling and vibration analysis of functionally graded cylindrical panel, JST., vol. 55, no. 5, pp. 587, 2017. DOI: 10.15625/2525-2518/55/5/8843.
  • T. Cuong-Le, K.D. Nguyen, N. Nguyen-Trong, S. Khatir, H. Nguyen-Xuan, and M. Abdel-Wahab, A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA, Compos. Struct., vol. 259, pp. 113216, 2021. DOI: 10.1016/j.compstruct.2020.113216.
  • X. Zhao, and K.M. Liew, A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels, Comput Mech., vol. 45, no. 4, pp. 297–310, 2010. DOI: 10.1007/s00466-009-0446-8.
  • M. Javani, Y. Kiani, and M.R. Eslami, Thermal buckling of FG graphene platelet reinforced composite annular sector plates, Thin-Walled Struct., vol. 148, pp. 106589, 2020. DOI: 10.1016/j.tws.2019.106589.
  • M. Jabbari, M. Hashemitaheri, A. Mojahedin, and M.R. Eslami, Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials, J. Therm. Stress., vol. 37, no. 2, pp. 202–220, 2014. DOI: 10.1080/01495739.2013.839768.
  • E. Arshid, S. Amir, and A. Loghman, Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates, Aerosp. Sci. Technol., vol. 111, pp. 106561, 2021. DOI: 10.1016/j.ast.2021.106561.
  • H. Wu, S. Kitipornchai, and J. Yang, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Mater. Des., vol. 132, pp. 430–441, 2017. DOI: 10.1016/j.matdes.2017.07.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.