131
Views
0
CrossRef citations to date
0
Altmetric
Original Article

A novel thermomechanical model for predicting interfacial stresses in flexible hybrid laminate

, , , &
Received 14 Mar 2023, Accepted 22 Aug 2023, Published online: 08 Sep 2023

References

  • S. Hwangbo, L. Hu, A.T. Hoang, J.Y. Choi, and J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor, Nat. Nanotechnol., vol. 17, no. 5, pp. 500–506, 2022. DOI: 10.1038/s41565-022-01102-7.
  • Y. Jia, J. Ning, J. Zhang, B. Wang, C. Yan, Y. Zeng, H. Wu, Y. Zhang, X. Shen, C. Zhang, H. Guo, D. Wang, and Y. Hao, High-quality transferred GaN-based light-emitting diodes through oxygen-assisted plasma patterning of graphene, ACS Appl. Mater. Interf., vol. 13, no. 27, pp. 32442–32449, 2021. DOI: 10.1021/acsami.1c04659.
  • Z. Zhang, W. Wang, Y. Jiang, Y.-X. Wang, Y. Wu, J.-C. Lai, S. Niu, C. Xu, C.-C. Shih, C. Wang, H. Yan, L. Galuska, N. Prine, H.-C. Wu, D. Zhong, G. Chen, N. Matsuhisa, Y. Zheng, Z. Yu, Y. Wang, R. Dauskardt, X. Gu, J. B. H. Tok, and Z. Bao, High-brightness all-polymer stretchable LED with charge-trapping dilution, Nature, vol. 603, no. 7902, pp. 624–630, 2022. DOI: 10.1038/s41586-022-04400-1.
  • H. Ding, G. Lv, Z. Shi, D. Cheng, Y. Xie, Y. Huang, L. Yin, J. Yang, Y. Wang, and X. Sheng, Optoelectronic sensing of biophysical and biochemical signals based on photon recycling of a micro-LED, Nano Res., vol. 14, no. 9, pp. 3208–3213, 2021. DOI: 10.1007/s12274-020-3254-2.
  • Y. Hao, S. Xiang, G. Han, J. Zhang, X. Ma, Z. Zhu, X. Guo, Y. Zhang, Y. Han, Z. Song, Y. Liu, L. Yang, H. Zhou, J. Shi, W. Zhang, M. Xu, W. Zhao, B. Pan, Y. Huang, Q. Liu, Y. Cai, J. Zhu, X. Ou, T. You, H. Wu, B. Gao, Z. Zhang, G. Guo, Y. Chen, Y. Liu, X. Chen, C. Xue, X. Wang, L. Zhao, X. Zou, L. Yan, and M. Li, Recent progress of integrated circuits and optoelectronic chips, Sci. Chin. Inform. Sci., vol. 64, pp. 2014, 2021. DOI: 10.1007/s11432-021-3235-7.
  • M. Silverå Ejneby, M. Jakešová, J. J. Ferrero, L. Migliaccio, I. Sahalianov, Z. Zhao, M. Berggren, D. Khodagholy, V. Đerek, J. N. Gelinas, and E. D. Głowacki, Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor, Nat. Biomed. Eng., vol. 6, no. 6, pp. 741–753, 2022. DOI: 10.1038/s41551-021-00817-7.
  • W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao, L. Liu, T. Li, K. Wen, J. Wang, L. He, L. Sun, W. Li, H. Ning, N. Dai, F. Qin, X. Tu, D. Pan, S. He, D. Li, Y. Zheng, Y. Lu, B. Liu, R. Zhang, Y. Shi, and X. Wang, Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix, Nat. Nanotechnol., vol. 16, no. 11, pp. 1231–1236, 2021. DOI: 10.1038/s41565-021-00966-5.
  • N. Yulianto, A. D. Refino, A. Syring, N. Majid, S. Mariana, P. Schnell, R. A. Wahyuono, K. Triyana, F. Meierhofer, W. Daum, F. F. Abdi, T. Voss, H. S. Wasisto, and A. Waag, Wafer-scale transfer route for top-down III-nitride nanowire LED arrays based on the femtosecond laser lift-off technique, Microsyst. Nanoeng., vol. 7, no. 1, pp. 32, 2021. DOI: 10.1038/s41378-021-00257-y.
  • M.K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, Flexible quantum dot light-emitting diodes for next-generation displays, NPJ Flex Electron., vol. 2, no. 1, pp. 10, 2018. DOI: 10.1038/s41528-018-0023-3.
  • Y. Jia, H. Guo, J. Ning, J. Zhang, D. Wang, B. Wang, H. Wu, X. Shen, C. Zhang, and Y. Hao, Flexible high-stability self-variable-voltage monolithic integrated system achieved by high-brightness LED for information transmission, Small., vol. 17, no. 45, pp. 2170238, 2021. DOI: 10.1002/smll.202170238.
  • X. Chen, Y. Yin, W. Yuan, S. Nie, Y. Lin, W. Guo, W. Su, Y. Li, K. Yang, and Z. Cui, Transparent thermotherapeutic skin patch based on highly conductive and stretchable copper mesh heater, Adv. Electron. Mater., vol. 7, no. 12, pp. 2100611, 2021. DOI: 10.1002/aelm.202100611.
  • H. Li, Y. Ma, Z. Liang, Z. Wang, Y. Cao, Y. Xu, H. Zhou, B. Lu, Y. Chen, Z. Han, S. Cai, and X. Feng, Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor, Nat. Sci. Rev., vol. 7, no. 5, pp. 849–862, 2020. DOI: 10.1093/nsr/nwaa022.
  • X. Liu, Y. Wei, and Y. Qiu, Advanced flexible skin-like pressure and strain sensors for human health monitoring, Micromachines (Basel)., vol. 12, no. 6, pp. 695, 2021. DOI: 10.3390/mi12060695.
  • Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, F. Wang, Y. Cao, Z. Wang, H. Li, Y. Chen, and X. Feng, Flexible hybrid electronics for digital healthcare, Adv. Mater., vol. 32, no. 15, pp. 1902062, 2020. DOI: 10.1002/adma.201902062.
  • J. Deng, H. Yuk, J. Wu, C. E. Varela, X. Chen, E. T. Roche, C. F. Guo, and X. Zhao, Electrical bioadhesive interface for bioelectronics, Nat. Mater., vol. 20, no. 2, pp. 229–236, 2021. DOI: 10.1038/s41563-020-00814-2.
  • Y. Huang, N. Zheng, Z. Cheng, Y. Chen, B. Lu, T. Xie, and X. Feng, Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive, ACS Appl. Mater. Interf., vol. 8, no. 51, pp. 35628–35633, 2016. DOI: 10.1021/acsami.6b11696.
  • R. Mikkonen, P. Puistola, I. Jonkkari, and M. Mantysalo, Inkjet printable polydimethylsiloxane for all-inkjet-printed multilayered soft electrical applications, ACS Appl. Mater. Interf., vol. 12, no. 10, pp. 11990–11997, 2020. DOI: 10.1021/acsami.9b19632.
  • R. Luo, H. Li, B. Du, S. Zhou, and Y. Zhu, A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends, Org. Electron., vol. 76, pp. 105451, 2020. DOI: 10.1016/j.orgel.2019.105451.
  • Y. Liu, X. Wang, Y. Xu, Z. Xue, Y. Zhang, X. Ning, X. Cheng, Y. Xue, D. Lu, Q. Zhang, F. Zhang, J. Liu, X. Guo, K.-C. Hwang, Y. Huang, J. A. Rogers, and Y. Zhang, Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling, Proc. Natl. Acad. Sci. USA., vol. 116, no. 31, pp. 15368–15377, 2019. DOI: 10.1073/pnas.1907732116.
  • MIL-PRF-38534-2019 Hybrid Microcircuits, General Specification for REVISION L. United States Department of Defense, Dec. 3, 2019.
  • EHAOAN Inc, “The classification of electronic components, from the working temperature to divide the device level”, EHAOAN Inc, Guangzhou, China. [Online]. Available: https://www.ehaoan.com/news/question/621.html. Accessed: Aug. 4, 2023.
  • GB/T 12085.2-2022, Optics and photonics-Environmental test methods—Part 2: cold, heat and humidity. National Standardization Technical Committee, China, 2022.
  • GB/T 2423.63-2019, Environmental testing—Part 2: test methods—Test: combined temperature(cold and heat)/low air pressure/vibration (mixed mode). National Standardization Technical Committee, China, 2019.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Chichester, 2014. DOI: 10.1002/9781118536643.
  • E. Carrera, A. G. de Miguel, M. Filippi, I. Kaleel, A. Pagani, M. Petrolo, and E. Zappino, Global-local plug-in for high-fidelity composite stress analysis in ABAQUS, Mech. Adv. Mater. Struct., vol. 28, no. 14, pp. 1445–1450, 2021. DOI: 10.1080/15376494.2019.1676938.
  • E. Carrera, and V.V. Zozulya, Carrera unified formulation (CUF) for the composite shells of revolution. Equivalent single layer models, Mech. Adv. Mater. Struct., pp. 1–23, 2023. DOI: 10.1080/15376494.2023.2218380.
  • J.L. Mantari, J. Yarasca, M. Petrolo, and E. Carrera, On the effects of trigonometric and exponential terms on the best theory diagrams for metallic, multilayered, and functionally graded plates, Mech. Adv. Mater. Struct., vol. 27, no. 5, pp. 426–440, 2020. DOI: 10.1080/15376494.2018.1478048.
  • A.G. de Miguel, A. Pagani, L. Rizzo, A. Catapano, and E. Panettieri, Accurate evaluation of 3D stress fields in adhesive bonded joints via higher-order FE models, Mech. Adv. Mater. Struct., vol. 27, no. 4, pp. 333–345, 2020. DOI: 10.1080/15376494.2018.1472352.
  • S. E. Stapleton, B. Stier, S. Jones, A. Bergan, I. Kaleel, M. Petrolo, E. Carrera, and B. A. Bednarcyk, A critical assessment of design tools for stress analysis of adhesively bonded double lap joints, Mech. Adv. Mater. Struct., vol. 28, no. 8, pp. 791–811, 2021. DOI: 10.1080/15376494.2019.1600768.
  • A.L. Moore, and L. Shi, Emerging challenges and materials for thermal management of electronics, Mater. Today., vol. 17, no. 4, pp. 163–174, 2014. DOI: 10.1016/j.mattod.2014.04.003.
  • H. H. Jung, J. Song, S. Nie, H. N. Jung, M. S. Kim, J.-W. Jeong, Y. M. Song, J. Song, and K.-I. Jang, Thin metallic heat sink for interfacial thermal management in biointegrated optoelectronic devices, Adv. Mater. Technol., vol. 3, no. 11, pp. 1800159, 2018. DOI: 10.1002/admt.201800159.
  • Y. Li, J. Zhang, Y. Xing, and J. Song, Thermomechanical analysis of epidermal electronic devices integrated with human skin, J. Appl. Mech-T ASME., vol. 84, no. 11, pp. 1004, 2017. DOI: 10.1115/1.4037704.
  • Z. Zhao, Y. Li, S. Dong, Y. Cui, and Z. Dai, An analytic model for transient heat conduction in bi-layered structures with flexible serpentine heaters, Appl. Math. Mech.-Engl. Ed., vol. 42, no. 9, pp. 1279–1296, 2021. DOI: 10.1007/s10483-021-2765-9.
  • E. Carrera, M. Cinefra, and F.A. Fazzolari, Some results on thermal stress of layered plates and shells by using unified formulation, J. Therm. Stresses., vol. 36, no. 6, pp. 589–625, 2013. DOI: 10.1080/01495739.2013.784122.
  • P. Raghu, A. Rajagopal, and J.N. Reddy, Nonlocal transient dynamic analysis of laminated composite plates, Mech. Adv. Mater. Struct., vol. 27, no. 13, pp. 1076–1084, 2020. DOI: 10.1080/15376494.2020.1718810.
  • M. Farrokh, M. Afzali, and E. Carrera, Mechanical and thermal buckling loads of rectangular FG plates by using higher-order unified formulation, Mech. Adv. Mater. Struct., vol. 28, no. 6, pp. 608–617, 2021. DOI: 10.1080/15376494.2019.1578014.
  • C. Wenzel, M. D’Ottavio, O. Polit, and P. Vidal, Assessment of free-edge singularities in composite laminates using higher-order plate elements, Mech. Adv. Mater. Struct., vol. 23, no. 9, pp. 948–959, 2016. DOI: 10.1080/15376494.2015.1121526.
  • C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie, J. Yan, Z. Zheng, X. Zhang, and Y. Tang, Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries, Adv. Mater., vol. 32, no. 17, pp. e1908470, 2020. DOI: 10.1002/adma.201908470.
  • Y. Chen, R. Jamshidi, W. Hong, and M. Reza. Interfacial stress in physically transient layered structures: an experimental and analytical approach, Adv. Mater. Interf., vol. 4, no. 7, pp. 1601076, 2017. DOI: 10.1002/admi.201601076.
  • J. Wu, H. Yuan, and L. Li, Effect of viscoelasticity on interfacial stress transfer mechanism in the biocomposites: a theoretical study of viscoelastic shear lag model, Compos. Part B-Eng., vol. 164, pp. 297–308, 2019. DOI: 10.1016/j.compositesb.2018.11.086.
  • X. Liu, Y. Qiu, Y. Wei, and R. Yan, A novel thermal-mechanical model and the characteristics of interfacial stress in the laminated structure for flexible electronics, J. Phys. D: Appl. Phys., vol. 55, no. 7, pp. 074004, 2022. DOI: 10.1088/1361-6463/ac30b9.
  • W. G. Mao, Y. Y. Chen, Y. J. Wang, M. Zhou, H. Y. Yang, Z. Wang, C. Y. Dai, X. Chen, and D. N. Fang, A multilayer structure shear lag model applied in the tensile fracture characteristics of supersonic plasma sprayed thermal barrier coating systems based on digital image correlation, Surf. Coat. Tech., vol. 350, pp. 211–226, 2018. DOI: 10.1016/j.surfcoat.2018.07.013.
  • Y. Liu, B.L. Wang, and K.F. Wang, Mechanical model for the interfacial thermal stress in porous ceramic foam coatings bonded to a substrate, Mech, Adv. Mater. Struct., vol. 27, no. 12, pp. 941–947, 2020. DOI: 10.1080/15376494.2018.1501835.
  • H.S. Shen, J.N. Reddy, and Y. Yu, Postbuckling of doubly curved FG-GRC laminated panels subjected to lateral pressure in thermal environments, Mech. Adv. Mater. Struct., vol. 28, no. 3, pp. 260–270, 2021. DOI: 10.1080/15376494.2018.155682.
  • B. Wu, A. Pagani, W.Q. Chen, and E. Carrera, Geometrically nonlinear refined shell theories by Carrera Unified Formulation, Mech. Adv. Mater. Struct., vol. 28, no. 16, pp. 1721–1741, 2021. DOI: 10.1080/15376494.2019.1702237.
  • Z. Yang, Z.C. Zhang, C.B. Liu, C.F. Gao, W.Q. Chen, and C.L. Zhang, Analysis of a hollow piezoelectric semiconductor composite cylinder under a thermal loading, Mech. Adv. Mater. Struct., vol. 30, no. 10, pp. 2037–2046, 2023. DOI: 10.1080/15376494.2022.2048424.
  • Jin-Woo Park, Seung-Ho Lee, and Chan-Woo Yang, Investigation of the interfacial adhesion of the transparent conductive oxide films to large-area flexible polymer substrates using laser-induced thermo-mechanical stresses, J. Appl. Phys., vol. 114, no. 6, pp. 063513, 2013. DOI: 10.1063/1.4818310.
  • Y. Yin, Y. Cui, Y. Li, Y. Xing, and M. Li, Thermal management of flexible wearable electronic devices integrated with human skin considering clothing effect, Appl. Therm. Eng., vol. 144, pp. 504–511, 2018. DOI: 10.1016/j.applthermaleng.2018.08.088.
  • Y. Cui, Y. Li, Y. Xing, Q. Ji, and J. Song, Thermal design of rectangular microscale inorganic light-emitting diodes, Appl. Therm. Eng., vol. 122, pp. 653–660, 2017. DOI: 10.1016/j.applthermaleng.2017.05.020.
  • Z. Guo, Z. Wu, H. Wang, H. Tian, L. Liu, Z. Peng, H. Li, and Q. Wang, Experimental and numerical study on formation of interface separation and interfacial dielectric strength of GIL insulator, IEEE Trans. Dielect. Electr. Insul., vol. 26, no. 6, pp. 1738–1746, 2019. DOI: 10.1109/TDEI.2019.008060.
  • W.E.R. Krieger, S. Raghavan, and S.K. Sitaraman, Experiments for obtaining cohesive-zone parameters for copper-mold compound interfacial delamination, IEEE Trans. Compon., Packag. Manufact. Technol., vol. 6, no. 9, pp. 1389–1398, 2016. DOI: 10.1109/TCPMT.2016.2589223.
  • L. Zhu, and X. Chen, Delamination-based measurement and prediction of the adhesion energy of thin film/substrate interfaces, J. Eng. Mater-T ASME., vol. 139, no. 2, pp. 021021, 2017. DOI: 10.1115/1.4035497.
  • W.F. Schmidt, Mechanical Design Considerations: Advanced Electronic Packaging, Wiley, Hoboken, 2006.
  • Y. Qiu, X. Qiu, X. Guo, D. Wang, and L. Sun, Thermal analysis of Si/GaAs bonding wafers and mitigation strategies of the bonding stresses, Adv. Mater. Sci. Eng., vol. 2017, pp. 1–8, 2017. DOI: 10.1155/2017/4903924.
  • K. Wang, Y. Huang, A. Chandra, and K. X. Hu, Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies, IEEE Trans. Comp. Packag. Technol., vol. 23, no. 2, pp. 309–316, 2000. DOI: 10.1109/6144.846769.
  • E. Suhir, Stresses in bi-metal thermostats, J. Appl. Mech., vol. 53, no. 3, pp. 657–660, 1986. DOI: 10.1115/1.3171827.
  • E. Suhir, Bi-material assembly subjected to thermal stress: propensity to delamination assessed using interfacial compliance model, J Mater Sci: Mater Electron., vol. 27, no. 7, pp. 6779–6785, 2016. DOI: 10.1007/s10854-016-4628-9.
  • E. Suhir, Bonded tri-material specimen subjected to shear-off testing: predicted interfacial stresses, J. Aerosp. Eng. Mech., vol. 4, no. 1, pp. 201–205, 2020. DOI: 10.36959/422/441.
  • E. Suhir, Analytical thermal stress modeling in electronics and photonics engineering: application of the concept of interfacial compliance, J. Therm. Stresses., vol. 42, no. 1, pp. 29–48, 2019. DOI: 10.1080/01495739.2018.1525331.
  • E. Suhir, Calculated thermally induced stresses in adhesively bonded and soldered assemblies, International Symposium on Microelectronics, ISHM, Atlanta, Georgia, 1986.
  • H. Cheng, J. Wu, M. Li, D. H. Kim, Y. S. Kim, Y. Huang, Z. Kang, K. C. Hwang, and J. A. Rogers, An analytical model of strain isolation for stretchable and flexible electronics, Appl. Phys. Lett., vol. 98, no. 6, pp. 061902, 2011. DOI: 10.1063/1.3553020.
  • S.I. Park, J.H. Ahn, X. Feng, S. Wang, Y. Huang, and J.A. Rogers, Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates, Adv. Funct. Mater., vol. 18, no. 18, pp. 2673–2684, 2008. DOI: 10.1002/adfm.200800306.
  • J. Wu, M. Li, W.-Q. Chen, D.-H. Kim, Y.-S. Kim, Y.-G. Huang, K.-C. Hwang, Z. Kang, and J. A. Rogers, A strain-isolation design for stretchable electronics, Acta Mech. Sin., vol. 26, no. 6, pp. 881–888, 2010. DOI: 10.1007/s10409-010-0384-x.
  • X.F. Wu and R.A. Jenson, Stress-function variational method for stress analysis of bonded joints under mechanical and thermal loads, Int. J. Eng. Sci., vol. 49, no. 3, pp. 279–294, 2011. DOI: 10.1016/j.ijengsci.2010.11.005.
  • A.I. Lurie and A. Belyaev, Saint-Venant’s problem. In: Theory of Elasticity, A. I. Lurie, A. Belyaev, Eds., Springer Berlin Heidelberg, Berlin, 2005. DOI: 10.1007/978-3-540-26455-2.
  • M. Bı^rsan, Saint-Venant’s problem. In: Encyclopedia of Thermal Stresses, R. B. Hetnarski, Ed., Springer, Dordrecht, 2013. DOI: 10.1007/978-94-007-2739-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.