117
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Damping characteristics and sound transmission loss of finite composite plates with frequency dependent constrained viscoelastic interlayer

ORCID Icon, ORCID Icon & ORCID Icon
Received 17 Jul 2023, Accepted 28 Aug 2023, Published online: 08 Sep 2023

References

  • M.D. Rao, Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes, J. Sound Vib., vol. 262, no. 3, pp. 457–474, 2003. DOI: 10.1016/s0022-460x(03)00106-8.
  • R. Talebitooti, and M.R. Zarastvand, Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the Third order Shear Deformation Theory, Aerosp. Sci. Technol., vol. 75, pp. 227–236, 2018. DOI: 10.1016/j.ast.2018.01.011.
  • Y. Yan, and L. Zhang, Variable-kinematic finite elements for the aero-thermo-elastic analysis of variable stiffness composite laminates, Mech. Adv. Mater. Struct., pp. 1–17, 2022. DOI: 10.1080/15376494.2022.2119312.
  • H. Kaidouchi, S. Kebdani, and S.A. Slimane, Vibro-acoustic analysis of the sound transmission through aerospace composite structures, Mech. Adv. Mater. Struct., vol. 30, no. 19, pp. 3912–3922, 2023. DOI: 10.1080/15376494.2022.2085348.
  • A. Treviso, B. Van Genechten, D. Mundo, and M. Tournour, Damping in composite materials: properties and models, Compos. Part B: Eng., vol. 78, pp. 144–152, 2015. DOI: 10.1016/j.compositesb.2015.03.081.
  • A. Oulmane, and A. Ross, Effects of material parameters on the transient dynamics of an impacted plate with partial constrained layer damping treatment, J. Acoust. Soc. Am., vol. 147, no. 3, pp. 1939–1952, 2020. DOI: 10.1121/10.0000890.
  • E. M. Kerwin Jr, Damping of flexural waves by a constrained viscoelastic layer, J. Acou. Soc. Am., vol. 31, pp. 952–962, 1959. DOI: 10.1121/1.1907821.
  • Eric E. Ungar, and Edward M. Kerwin, Jr., Loss factors of viscoelastic systems in terms of energy concepts, J. Acou. Soc. Am., vol. 34, no. 7, pp. 954–957, 1962. ; DOI: 10.1121/1.1918227.
  • X.Q. Zhou, D.Y. Yu, X.Y. Shao, S.Q. Zhang, and S. Wang, Research and applications of viscoelastic vibration damping materials: a review, Compos. Struct., vol. 136, pp. 460–480, 2016. DOI: 10.1016/j.compstruct.2015.10.014.
  • W.V. Liebig, V. Sessner, K.A. Weidenmann, and L. Kärger, Numerical and experimental investigations of the damping behaviour of hybrid CFRP-elastomer-metal laminates, Compos. Struct., vol. 202, pp. 1109–1113, 2018. DOI: 10.1016/j.compstruct.2018.05.051.
  • A. Jackstadt, W.V. Liebig, and L. Kärger, Analytical modeling and investigation of constrained layer damping in hybrid laminates based on a unified plate formulation, Int. J. Mech. Sci., vol. 216, pp. 106964, 2022. DOI: 10.1016/j.ijmecsci.2021.106964.
  • C. Zheng, Y. Zhai, and S. Liang, Improving damping performance of fiberglass-reinforced resin matrix composites by designing viscoelastic sandwich layer, Mech. Adv. Mater. Struct., vol. 28, no. 21, pp. 2202–2209, 2021. DOI: 10.1080/15376494.2020.1722873.
  • Y. Koutsawa, W.L. Azoti, S. Belouettar, R. Martin, and E. Barkanov, Loss behavior of viscoelastic sandwich structures: a statistical-continuum multi-scale approach, Compos. Struct., vol. 94, no. 4, pp. 1391–1397, 2012. DOI: 10.1016/j.compstruct.2011.11.003.
  • H. Daoud, A. El Mahi, J.-L. Rebière, M. Taktak, and M. Haddar, Characterization of the vibrational behaviour of flax fibre reinforced composites with an interleaved natural viscoelastic layer, Appl. Acoust., vol. 128, pp. 23–31, 2017. DOI: 10.1016/j.apacoust.2016.12.005.
  • M. Hamdaoui, K. Ledi, G. Robin, and E.M. Daya, Identification of frequency-dependent viscoelastic damped structures using an adjoint method, J. Sound Vib., vol. 453, pp. 237–252, 2019. DOI: 10.1016/j.jsv.2019.04.022.
  • R. Lewandowski, and B. Chorążyczewski, Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers, Comput. Struct., vol. 88, no. 1-2, pp. 1–17, 2010. DOI: 10.1016/j.compstruc.2009.09.001.
  • D.-L. Chen, P.-F. Yang, and Y.-S. Lai, A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation, Microelectron. Reliab., vol. 52, no. 3, pp. 541–558, 2012. DOI: 10.1016/j.microrel.2011.10.001.
  • Y. Wang, and D.J. Inman, Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping, J. Sound Vib., vol. 332, no. 23, pp. 6177–6191, 2013. DOI: 10.1016/j.jsv.2013.06.016.
  • F. Renaud, J.-L. Dion, G. Chevallier, I. Tawfiq, and R. Lemaire, A new identification method of viscoelastic behavior: application to the generalized Maxwell model, Mech. Syst. Sig. Process., vol. 25, no. 3, pp. 991–1010, 2011. DOI: 10.1016/j.ymssp.2010.09.002.
  • M.A. Trindade, A. Benjeddou, and R. Ohayon, Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping, J. Vib. Acoust., vol. 122, no. 2, pp. 169–174, 2000. DOI: 10.1115/1.568429.
  • M. Ziapkoff, L. Duigou, G. Robin, J.-M. Cadou, and E.M. Daya, A high order Newton method to solve vibration problem of composite structures considering fractional derivative Zener model, Mech. Adv. Mater. Struct., pp. 1–11, 2023. DOI: 10.1080/15376494.2022.2161115.
  • W. Cai, P. Wang, and Y. Zhang, Fractional-order model for temperature-dependent rheological behaviors of polymeric materials, Mech. Adv. Mater. Struct., pp. 1–12, 2023. DOI: 10.1080/15376494.2023.2190741.
  • M. Bilasse, E. Daya, and L. Azrar, Linear and nonlinear vibrations analysis of viscoelastic sandwich beams, J. Sound Vib., vol. 329, no. 23, pp. 4950–4969, 2010. DOI: 10.1016/j.jsv.2010.06.012.
  • J. Ro, and A. Baz, Optimum placement and control of active constrained layer damping using modal strain energy approach, J. Vib. Control., vol. 8, no. 6, pp. 861–876, 2002. DOI: 10.1177/107754602029204.
  • M. D’Ottavio, A. Krasnobrizha, E. Valot, O. Polit, R. Vescovini, and L. Dozio, Dynamic response of viscoelastic multiple-core sandwich structures, J. Sound Vib., vol. 491, pp. 115753, 2021. DOI: 10.1016/j.jsv.2020.115753.
  • F. Abdoun, L. Azrar, E. Daya, and M. Potier-Ferry, Forced harmonic response of viscoelastic structures by an asymptotic numerical method, Comput. Struct., vol. 87, no. 1-2, pp. 91–100, 2009. DOI: 10.1016/j.compstruc.2008.08.006.
  • J. Jith, and S. Sarkar, A model order reduction technique for systems with nonlinear frequency dependent damping, Appl. Math. Modell., vol. 77, pp. 1662–1678, 2020. DOI: 10.1016/j.apm.2019.08.030.
  • B. Sun, J. Wang, Z-l Li, Y. Qin, S-z Liu, and D. Tomker, Modified modal strain energy method for analyzing the dynamic damping behavior of constrained viscoelastic structures, JESTR., vol. 10, no. 5, pp. 174–180, 2017. DOI: 10.25103/jestr.105.21.
  • M.F. Caliri, A.J.M. Ferreira, and V. Tita, A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method, Compos. Struct., vol. 156, pp. 63–77, 2016. DOI: 10.1016/j.compstruct.2016.02.036.
  • E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, ARCO., vol. 9, no. 2, pp. 87–140, 2002. DOI: 10.1007/BF02736649.
  • A.S. Sayyad, and Y.M. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results, Compos. Struct., vol. 129, pp. 177–201, 2015. DOI: 10.1016/j.compstruct.2015.04.007.
  • H. Hu, S. Belouettar, M. Potier-Ferry, and E.M. Daya, Review and assessment of various theories for modeling sandwich composites, Compos. Struct., vol. 84, no. 3, pp. 282–292, 2008. DOI: 10.1016/j.compstruct.2007.08.007.
  • E. Carrera, F. Miglioretti, and M. Petrolo, Guidelines and recommendations on the use of higher order finite elements for bending analysis of plates, Int. J. Comput. Methods Eng. Sci. Mech., vol. 12, no. 6, pp. 303–324, 2011. DOI: 10.1080/15502287.2011.615792.
  • A. Alesadi, M. Galehdari, and S. Shojaee, Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation, Mech. Adv. Mater. Struct., vol. 25, no. 12, pp. 1018–1032, 2018. DOI: 10.1080/15376494.2017.1342883.
  • K. Koutoati, F. Mohri, E.M. Daya, and E. Carrera, A finite element approach for the static and vibration analyses of functionally graded material viscoelastic sandwich beams with nonlinear material behavior, Compos. Struct., vol. 274, pp. 114315, 2021. DOI: 10.1016/j.compstruct.2021.114315.
  • A.J.M. Ferreira, C.M.C. Roque, E. Carrera, M. Cinefra, and O. Polit, Bending and vibration of laminated plates by a layerwise formulation and collocation with radial basis functions, Mech. Adv. Mater. Struct., vol. 20, no. 8, pp. 624–637, 2013. DOI: 10.1080/15376494.2011.643282.
  • A.J.M. Ferreira, A.L. Araújo, A.M.A. Neves, J.D. Rodrigues, E. Carrera, M. Cinefra, C.M. Mota Soares, A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates, Compos. Part B: Eng., vol. 45, no. 1, pp. 1258–1264, 2013. DOI: 10.1016/j.compositesb.2012.05.012.
  • Z. Zhou, M. Chen, and Y. Li, Application scope studies of analytical methods based on the equivalent single-layer and layerwise theories for vibration analysis of symmetric sandwich plates, Acta Mech., vol. 234, no. 2, pp. 377–401, 2023. DOI: 10.1007/s00707-022-03392-3.
  • L. Demasi, G. Biagini, F. Vannucci, E. Santarpia, and R. Cavallaro, Equivalent single layer, zig-zag, and layer wise theories for variable angle tow composites based on the generalized unified formulation, Compos. Struct., vol. 177, pp. 54–79, 2017. DOI: 10.1016/j.compstruct.2017.06.033.
  • M. D’Ottavio, A sublaminate generalized unified formulation for the analysis of composite structures, Compos. Struct., vol. 142, pp. 187–199, 2016. DOI: 10.1016/j.compstruct.2016.01.087.
  • A. Gorgeri, R. Vescovini, and L. Dozio, Analysis of multiple-core sandwich cylindrical shells using a sublaminate formulation, Compos. Struct., vol. 225, pp. 111067, 2019. DOI: 10.1016/j.compstruct.2019.111067.
  • A. Gorgeri, R. Vescovini, and L. Dozio, Sublaminate variable kinematics shell models for functionally graded sandwich panels: bending and free vibration response, Mech. Adv. Mater. Struct., vol. 29, no. 1, pp. 15–32, 2022. DOI: 10.1080/15376494.2020.1749738.
  • L. Dozio, and L. Alimonti, Variable kinematic finite element models of multilayered composite plates coupled with acoustic fluid, Mech. Adv. Mater. Struct., vol. 23, no. 9, pp. 981–996, 2016. DOI: 10.1080/15376494.2015.1121558.
  • S. Ren, G. Zhao, and S. Zhang, A layerwise finite element formulation for vibration and damping analysis of sandwich plate with moderately thick viscoelastic core, Mech. Adv. Mater. Struct., vol. 27, no. 14, pp. 1201–1212, 2020. DOI: 10.1080/15376494.2018.1504360.
  • Z. Xie, and W.S. Shepard, Jr, Analytical modeling and analysis of a constrained layer damped plate to examine the impact of the transverse compressional damping component, Mech. Adv. Mater. Struct., vol. 21, no. 8, pp. 669–679, 2014. DOI: 10.1080/15376494.2012.707296.
  • J. Reddy, A general non-linear third-order theory of plates with moderate thickness, Int. J. Non. Linear Mech., vol. 25, no. 6, pp. 677–686, 1990. DOI: 10.1016/0020-7462(90)90006-U.
  • H. Mohamed, V. Gunasekaran, J. Pitchaimani, V. Rajamohan, G. Kotriwar, and G. Manickam, A comprehensive damping study of variable stiffness composite rectangular/skew laminates reinforcement with curvilinear fibers by higher-order shear flexible model, Mech. Adv. Mater. Struct., vol. 30, no. 14, pp. 2806–2825, 2023. DOI: 10.1080/15376494.2022.2064014.
  • R. Lewandowski, P. Litewka, and P. Wielentejczyk, Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory – Part 1. Theoretical background, Compos. Struct., vol. 278, pp. 114547, 2021. DOI: 10.1016/j.compstruct.2021.114547.
  • Q. Jin, Interlaminar stress analysis of functionally graded graphene reinforced composite laminated plates based on a refined plate theory, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4138–4150, 2022. DOI: 10.1080/15376494.2021.1919805.
  • E. Carrera, S. Valvano, and M. Filippi, Classical, higher-order, zig-zag and variable kinematic shell elements for the analysis of composite multilayered structures, Eur. J. Mech. A Solids., vol. 72, pp. 97–110, 2018. DOI: 10.1016/j.euromechsol.2018.04.015.
  • B. Liu, L. Zhao, A.J.M. Ferreira, Y.F. Xing, A.M.A. Neves, and J. Wang, Analysis of viscoelastic sandwich laminates using a unified formulation and a differential quadrature hierarchical finite element method, Compos. Part B: Eng., vol. 110, pp. 185–192, 2017. DOI: 10.1016/j.compositesb.2016.11.028.
  • Y. Yan, E. Carrera, and A. Pagani, Free vibration analysis of curved metallic and composite beam structures using a novel variable-kinematic DQ method, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 3743–3762, 2022. DOI: 10.1080/15376494.2021.1909784.
  • M. d’Ottavio, D. Ballhause, T. Wallmersperger, and B. Kröplin, Considerations on higher-order finite elements for multilayered plates based on a unified formulation, Comput. Struct., vol. 84, no. 19-20, pp. 1222–1235, 2006. DOI: 10.1016/j.compstruc.2006.01.025.
  • A. Tarkashvand, K. Daneshjou, A. Golmohammadi, and Z. Daneshjoo, Viscoelastic-acoustic response of new polymeric matrix composite shells considering cavity resonances using a new approach: layered viscoelastic model, Compos. Struct., vol. 292, pp. 115673, 2022. DOI: 10.1016/j.compstruct.2022.115673.
  • C. Nerse, S. Wang, and S. Goo, Effect of damping distribution on coupling in panel–cavity systems: conditions for optimality through a modal approach, Int. J. Mech. Sci., vol. 187, pp. 105908, 2020. DOI: 10.1016/j.ijmecsci.2020.105908.
  • N. Sharma, T.R. Mahapatra, S.K. Panda, and C.K. Hirwani, Acoustic radiation and frequency response of higher-order shear deformable multilayered composite doubly curved shell panel – An experimental validation, Appl. Acoust., vol. 133, pp. 38–51, 2018. DOI: 10.1016/j.apacoust.2017.12.013.
  • C. Shen, F.X. Xin, L. Cheng, and T.J. Lu, Sound radiation of orthogonally stiffened laminated composite plates under airborne and structure borne excitations, Compos. Sci. Technol., vol. 84, pp. 51–57, 2013. DOI: 10.1016/j.compscitech.2013.05.006.
  • C. Li, Z. Chen, T. Fu, and J. Li, Effect of truss core on sound radiation behavior of sandwich plate structures under structure borne excitation, Mech. Adv. Mater. Struct., pp. 1–9, 2023. DOI: 10.1080/15376494.2023.2202670.
  • C.W. Isaac, M. Pawelczyk, and S. Wrona, Comparative study of sound transmission losses of sandwich composite double panel walls, Appl. Sci., vol. 10, no. 4, pp. 1543, 2020. DOI: 10.3390/app10041543.
  • S. Assaf, M. Guerich, and P. Cuvelier, Vibration and acoustic response of damped sandwich plates immersed in a light or heavy fluid, Comput. Struct., vol. 88, no. 13-14, pp. 870–878, 2010. DOI: 10.1016/j.compstruc.2010.04.006.
  • M. Guerich, and S. Assaf, Optimization of noise transmission through sandwich structures, J. Vib. Acoust., vol. 135, no. 5, pp. 051010(1)- 051010(13), 2013. DOI: 10.1115/1.4024216.
  • B. Wang, and T. Dou, A quasi-3D layer-wise finite element model for vibroacoustic analysis of finite sandwich plates with frequency-dependent viscoelastic core, Mech. Adv. Mater. Struct., vol. 30, no. 21, pp. 4419–4429, 2023. DOI: 10.1080/15376494.2022.2095064.
  • A. Loredo, A. Plessy, A. El Hafidi, and N. Hamzaoui, Numerical vibroacoustic analysis of plates with constrained-layer damping patches, J. Acoust. Soc. Am., vol. 129, no. 4, pp. 1905–1918, 2011. DOI: 10.1121/1.3546096.
  • W. Larbi, J.F. Deü, R. Ohayon, and R. Sampaio, Coupled FEM/BEM for control of noise radiation and sound transmission using piezoelectric shunt damping, Appl. Acoust., vol. 86, pp. 146–153, 2014. DOI: 10.1016/j.apacoust.2014.02.003.
  • W. Larbi, J.F. Deü, and R. Ohayon, Vibroacoustic analysis of double-wall sandwich panels with viscoelastic core, Comput. Struct., vol. 174, pp. 92–103, 2016. DOI: 10.1016/j.compstruc.2015.09.012.
  • M.C. Junger, and D. Feit, Sound, Structures, and Their Interaction, vol. 225. Cambridge, MA: MIT Press, 1986.
  • S.K. Baydoun, and S. Marburg, Investigation of radiation damping in sandwich structures using finite and boundary element methods and a nonlinear eigensolver, J. Acoust. Soc. Am., vol. 147, no. 3, pp. 2020–2034, 2020. DOI: 10.1121/10.0000947.
  • K.-J. Bathe, Finite Element Procedures, 2nd ed. Klaus-Jurgen Bathe, Prentice Hall, New Jersey, 2006.
  • J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Florida, 2003.
  • P. Vidal, L. Gallimard, and O. Polit, Free vibration analysis of composite plates based on a variable separation method, Compos. Struct., vol. 230, pp. 111493, 2019. DOI: 10.1016/j.compstruct.2019.111493.
  • W. Zhen, and C. Wanji, Free vibration of laminated composite and sandwich plates using global–local higher-order theory, J. Sound Vib., vol. 298, no. 1-2, pp. 333–349, 2006. DOI: 10.1016/j.jsv.2006.05.022.
  • T. Kant, and K. Swaminathan, Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory, Compos. Struct., vol. 53, no. 1, pp. 73–85, 2001. DOI: 10.1016/S0263-8223(00)00180-X.
  • M. Rao, K. Scherbatiuk, Y. Desai, and A. Shah, Natural vibrations of laminated and sandwich plates, J. Eng. Mech., vol. 130, no. 11, pp. 1268–1278, 2004. DOI: 10.1061/(ASCE)0733-9399(2004)130:11(1268).
  • Y. Yang, M.J. Kingan, and B.R. Mace, A wave and finite element method for calculating sound transmission through rectangular panels, Mech. Syst. Sig. Process., vol. 151, pp. 107357, 2021. DOI: 10.1016/j.ymssp.2020.107357.
  • L. Dozio, R. Vescovini, and M. D’Ottavio, Structural and acoustic response of finite sandwich plates by using sublaminate models with variable kinematics, In Proceedings of the 12th International Symposium on Vibrations of Continuous Systems (ISVCS12), 2019. pp. 1–3.
  • F.J. Fahy, and P. Gardonio, Sound and Structural Vibration: Radiation, Transmission and Response. Elsevier, Oxford, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.