42
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Application of artificial neural networks in atomic force microscopy

ORCID Icon, &
Received 29 Jun 2023, Accepted 10 Sep 2023, Published online: 20 Sep 2023

References

  • E.B. Caldona, A.C.C. De Leon, B.B. Pajarito, and R.C. Advincula, A review on rubber-enhanced polymeric materials, Polym. Rev., vol. 57, no. 2, pp. 311–338, 2017. DOI: 10.1080/15583724.2016.1247102.
  • M. Kluppel, The role of disorder in filler reinforcement of elastomers on various length scales, Adv. Polym. Sci., vol. 164, pp. 1–86, 2003. DOI: 10.1007/b11054.
  • K. Akutagawa, K. Yamaguchi, A. Yamamoto, H. Heguri, H. Jinnai, and Y. Shinbori, Mesoscopical mechanical analysis of filled elastomer with 3D-finite element analysis and transmission electron microtomography, Rubber Chem. Technol., vol. 81, no. 2, pp. 182–189, 2008. DOI: 10.5254/1.3548203.
  • Y. Marco, V. Le Saux, S. Calloch, and P. Charrier, X-ray computed μ-tomography: a tool for the characterization fatigue defect population in a polychloroprene rubber, Procedia Eng., vol. 2, no. 1, pp. 2131–2140, 2010. DOI: 10.1016/j.proeng.2010.03.229.
  • N.V. Shadrinov and S.I. Nartakhova, Structure and properties of nitrile-butadiene rubber filled with carbon and basalt fibers, Inorg. Mater. Appl. Res., vol. 8, no. 1, pp. 140–144, 2017. DOI: 10.1134/S207511331701035X.
  • M. Qian, J. Sui, X. Wang, and Y. Zhu, Mechanical properties of silicon carbon black filled natural rubber elastomer, Chem. Res. Chin. Univ., vol. 35, no. 1, pp. 139–145, 2019. DOI: 10.1007/s40242-019-8289-0.
  • X. Li Q. Yang, Y. Ye, L. Zhang, S. Hong, N. Ning, and M. Tian, Quantifying 3D-nanosized dispersion of SiO2 in elastomer nanocomposites by 3D-scanning transmission electron microscope (STEM), Compos. Part A, vol. 131, pp. 105778, 2020. DOI: 10.1016/j.compositesa.2020.105778.
  • H. Watabe, M. Komura, K. Nakajima, and T. Nishi, Atomic force microscopy of mechanical property of natural rubber, Jpn. J. Appl. Phys., vol. 44, no. 7S, pp. 5393–5396, 2005. DOI: 10.1143/JJAP.44.5393.
  • O. Lame, Does fractal nanostructure of filled rubber lead to fractal deformations? In situ measurements of strain heterogeneities by AFM, Macromolecules, vol. 43, no. 13, pp. 5881–5887, 2010. DOI: 10.1021/ma100697v.
  • D. Gabriel, A. Karbach, D. Drechsler, J. Gutmann, K. Graf, and S. Kheirandish, Bound rubber morphology and loss tangent properties of carbon-black-filled rubber compounds, Colloid Polym. Sci., vol. 294, no. 3, pp. 501–511, 2016. DOI: 10.1007/s00396-015-3802-6.
  • D.P. Cole, T.C. Henry, F. Gardea, and R.A. Haynes, Interphase mechanical behavior of carbon fiber reinforced polymer exposed to cyclic loading, Compos. Sci. Technol., vol. 151, pp. 202–210, 2017. DOI: 10.1016/j.compscitech.2017.08.012.
  • С.Н. Чвалун, Полимерные нанокомпозиты, Природа., vol. 7, pp. 22–30, 2000. [S.N. Chvalun, Polymer nanocomposites, Priroda, vol. 7, pp. 22–30, 2000].
  • H.-J. Butt, B. Capella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep., vol. 59, no. 1–6, pp. 1–152, 2005. DOI: 10.1016/j.surfrep.2005.08.003.
  • O.K. Garishin and V.V. Moshev, Structural rearrangement in dispersion-filled composites: influence on mechanical properties, Polym. Sci., vol. 47, no. 4, pp. 403–408, 2005.
  • A.L. Svistkov, A continuum-molecular model of oriented polymer region formation in elastomer nanocomposites, Mech. Solids, vol. 45, no. 4, pp. 562–574, 2010. DOI: 10.3103/S0025654410040060.
  • T. Tang and S.D. Felicelli, Computational evaluation of effective stress relaxation behavior of polymer composites, Int. J. Eng. Sci., vol. 90, pp. 76–85, 2015. DOI: 10.1016/j.ijengsci.2015.02.003.
  • D. Banerjee, T. Nguyen, and T.-J. Chuang, Mechanical properties of single-walled carbon nanotube reinforced polymer composites with varied interphase’s modulus and thickness: finite element analysis study, Comput. Mater. Sci., vol. 114, pp. 209–218, 2016. DOI: 10.1016/j.commatsci.2015.12.026.
  • I. Ivaneiko V. Toshchevikov, M. Saphiannikova, K.W. Stöckelhuber, F. Petry, S. Westermann, and G. Heinrich, Modeling of dynamic-mechanical behavior of reinforced elastomers using a multiscale approach, Polymer, vol. 82, pp. 356–365, 2016. DOI: 10.1016/j.polymer.2015.11.039.
  • R. Raghunath, D. Juhre, and M. Klüppel, A physically motivated model for filled elastomers including strain rate and amplitude dependency in finite viscoelasticity, Int. J. Plast., vol. 78, pp. 223–241, 2016. DOI: 10.1016/j.ijplas.2015.11.005.
  • P. Kuhn, G. Catalanotti, J. Xavier, P.P. Camanho, and H. Koerber, Fracture toughness and crack resistance curves for fiber compressive failure mode in polymer composites under high rate loading, Compos. Struct., vol. 182, pp. 164–175, 2017. DOI: 10.1016/j.compstruct.2017.09.040.
  • M. Malagu, M. Goudarzi, A. Lyulin, E. Benvenuti, and A. Simone, Diameter-dependent elastic properties of carbon nanotube-polymer composites: Emergence of size effects from atomistic-scale simulations, Compos. Part B, vol. 131, pp. 260–281, 2017. DOI: 10.1016/j.compositesb.2017.07.029.
  • J. Sapkota, A. Gooneie, A. Shirole, and J.C.M. Garcia, A refined model for the mechanical properties of polymer composites with nanorods having different length distributions, J. Appl. Polym. Sci., vol. 134, no. 36, pp. 45279, 2017. DOI: 10.1002/app.45279.
  • M.K. Hassanzadeh-Aghdam, R. Ansari, and F. Darvizeh, Multi-stage micromechanical modeling of effective elastic properties of carbon fiber/carbon nanotube-reinforced polymer hybrid composites, Mech. Adv. Mater. Struct., vol. 26, no. 24, pp. 2047–2061, 2019. DOI: 10.1080/15376494.2018.1472336.
  • J. Venetis and E. Sideridis, An upper bound of in-plane shear modulus for unidirectional fibrous composites, Arch. Appl. Mech., vol. 90, no. 1, pp. 173–186, 2020. DOI: 10.1007/s00419-019-01603-3.
  • И.А. Морозов, О.К. Гаришин, Ф.В. Володин, А.В. Кондюрин, and С.Н. Лебедев, Экспериментальное и численное моделирование эластомерных композитов путем исследования нанослоев полиизопрена на углеродной поверхности, Механика композиционных материалов и конструкций, vol. 14, №. 1, pp. 3–15, 2008. https://elibrary.ru/item.asp?id=13124280 [I.A. Morozov, O.K. Garishin, F.V. Volodin, A.V. Kondyurin, and S.N. Lebedev, Experimental and numerical modeling of elastomeric composites by studying polyisoprene nanolayers on a carbon surface, Механика композиционных материалов и конструкций, vol. 14, no. 1, pp. 3–15, 2008].
  • О.К. Гаришин, Моделирование контактного режима работы атомно-силового микроскопа с учетом немеханических сил взаимодействия с поверхностью образца, Вычислительная механика сплошных сред, vol. 5, №. 1, pp. 61–69, 2012. [O.K. Garishin, Simulation of the contact mode of operation of an atomic force microscope, taking into account non-mechanical forces of interaction with the surface of the sample, Comp. Contin. Mech., vol. 5, no. 1, pp. 61–69, 2012]. DOI: 10.7242/1999-6691/2012.5.1.8.
  • R. Garcia, Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications, Chem. Soc. Rev., vol. 49, no. 16, pp. 5850–5884, 2020. DOI: 10.1039/d0cs00318b.
  • F. Tao, H. Zhang, A. Liu, and A.Y.C. Nee, Digital twin in industry: state-of-the-art, IEEE Trans. Ind. Inf., vol. 15, no. 4, pp. 2405–2415, 2019. DOI: 10.1109/TII.2018.2873186.
  • D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, Characterising the digital twin: a systematic literature review, CIRP J. Manuf. Sci. Technol., vol. 29, pp. 36–52, 2020. DOI: 10.1016/j.cirpj.2020.02.002.
  • H.F. Stabenau, C.P. Bridge, and J.W. Waks, A novel method of generating augmented annotated electrocardiogram QRST complexes and rhythm strips, Comput. Biol. Med., vol. 134, pp. 104408, 2021. DOI: 10.1016/j.compbiomed.2021.104408.
  • F.X. Wu, M. Li, L. Kurgan, and L. Rueda, Deep neural networks for precision medicine, Neurocomputing, vol. 469, pp. 330–331, 2022. DOI: 10.1016/j.neucom.2021.06.095.
  • B.-Y. Ji, Z.-H. You, Y. Wang, Z.-W. Li, and L. Wong, DANE-MDA: Predicting microRNA-disease associations via deep attributed network embedding, iScience, vol. 24, no. 6, pp. 102455–102480, 2021. DOI: 10.1016/j.isci.2021.102455.
  • Z. Xu, A. Verma, U. Naveed, S.F. Bakhoum, P. Khosravi, and O. Elemento, Deep learning predicts chromosomal instability from histopathology images, iScience, vol. 24, no. 5, pp. 102394–110421, 2021. DOI: 10.1016/j.isci.2021.102394.
  • K.K. Kumar, Y. Kasiviswanadham, D.V.S.N.V. Indira, P.P. Palesetti, and ChV Bhargavi, Criminal face identification system using deep learning algorithm multi-task cascade neural network (MTCNN), Mater. Today Proc., vol. 80, pp. 2406–2410, 2023. DOI: 10.1016/j.matpr.2021.06.373.
  • Y.C. Wu, F. Yin, and C.L. Liu, Improving handwritten Chinese text recognition using neural network language models and convolutional neural network shape models, Pattern Recognit., vol. 65, pp. 251–264, 2017. DOI: 10.1016/j.patcog.2016.12.026.
  • T. Parcollet, M. Morchid, G. Linares, and R. De Mori, Bidirectional quaternion long short-term memory recurrent neural networks for speech recognition, International Conference on Acoustics, Speech and Signal Processing, Proceedings., pp. 8519–8523, 2019. https://arxiv.org/pdf/1811.02566.pdf.
  • J. Bae and Y. Kim, Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks, J. Franklin Inst., vol. 349, no. 2, pp. 578–603, 2012. DOI: 10.1016/j.jfranklin.2011.08.009.
  • D. Perez, B. Wohlberg, T.A. Lovell, M. Shoemaker, and R. Bevilacqua, Orbit-centered atmospheric density prediction using artificial neural networks, Acta Astronaut., vol. 98, pp. 9–23, 2014. DOI: 10.1016/j.actaastro.2014.01.007.
  • D. Perez and R. Bevilacqua, Neural Network based calibration of atmospheric density models, Acta Astronaut., vol. 110, pp. 58–76, 2015. DOI: 10.1016/j.actaastro.2014.12.018.
  • S. Srivastava, A.K. Roy, and K. Kumar, Design analysis of mixed flow pump impeller blades using ANSYS and prediction of its parameters using artificial neural network, Procedia Eng., vol. 97, pp. 2022–2031, 2014. DOI: 10.1016/j.proeng.2014.12.445.
  • S.K. Kamane, N.K. Patil, and B.R. Patagundi, Prediction of twisting performance of steel I beam bonded exteriorly with fiber reinforced polymer sheet by using neural network, Mater. Today Proc., vol. 43, pp. 514–519, 2021. DOI: 10.1016/j.matpr.2020.12.026.
  • R. Srikanth, P. Nemani, and C. Balaji, Multi-objective geometric optimization of a PCM based matrix type composite heat sink, Appl. Energy, vol. 156, pp. 703–714, 2015. DOI: 10.1016/j.apenergy.2015.07.046.
  • S. Pathak, R. Zhang, K. Bun, H. Zhang, B. Gayen, and X. Wang, Development of a novel wind to electrical energy converter of passive ferrofluid levitation through its parameter modeling and optimization, Sustain. Energy Technol. Assess., vol. 48, pp. 101641–101648, 2021. DOI: 10.1016/j.seta.2021.101641.
  • M. Bessa R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W. Chen, and W.K. Liu, A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality, Comput. Methods Appl. Mech. Eng., vol. 320, pp. 633–667, 2017. DOI: 10.1016/j.cma.2017.03.037.
  • V.M. Nguyen-Thanh, L.T.K. Nguyen, T. Rabczuk, and X. Zhuang, A surrogate model for computational homogenization of elastostatics at finite strain using the HDMR-based neural network approximator, Preprint arXiv: 1906.02005, pp. 1–42, 2019. DOI: 10.48550/arXiv.1906.02005.
  • B. Wang, J.H. Ma, and Y.P. Wu, Application of artificial neural network in prediction of abrasion of rubber composites, Mater. Des., vol. 49, pp. 802–807, 2013. DOI: 10.1016/j.matdes.2013.01.047.
  • K.-L. Xiang, P.-Y. Xiang, and Y.-P. Wu, Prediction of the fatigue life of natural rubber composites by artificial neural network approaches, Mater. Des., vol. 57, pp. 180–185, 2014. DOI: 10.1016/j.matdes.2013.12.044.
  • A.S. Hosseini, P. Hajikarimi, M. Gandomi, F.M. Nejad, and A.H. Gandomi, Optimized machine learning approaches for the prediction of viscoelastic behavior of modified asphalt binders, Constr. Build. Mater., vol. 299, pp. 124264–124278, 2021. DOI: 10.1016/j.conbuildmat.2021.124264.
  • S. Kumar, Priyadarshan, and S.K. Ghosh, Statistical and computational analysis of an environment-friendly MWCNT/NiSO4 composite materials, J. Manufac. Process., vol. 66, pp. 11–26, 2021. DOI: 10.1016/j.jmapro.2021.04.001.
  • H.-B. Ly, T.-A. Nguyen, H.-V.T. Mai, and V.Q. Tran, Development of deep neural network model to predict the compressive strength of rubber concrete, Constr. Build. Mater., vol. 301, pp. 124081–124100, 2021. DOI: 10.1016/j.conbuildmat.2021.124081.
  • Y. Zeng, P. Pan, Z. He, and Z. Shen, An innovative method for axial pressure evaluation in smart rubber bearing based on bidirectional long-short term memory neural network, Measurement, vol. 182, pp. 109653–109662, 2021. DOI: 10.1016/j.measurement.2021.109653.
  • M. Zakaulla, Y. Pasha, and S.K. Siddalingappa, Prediction of mechanical properties for polyetheretherketone composite reinforced with graphene and titanium powder using artificial neural network, Mater. Today Proc., vol. 49, no. 5, pp. 1268–1274, 2022. DOI: 10.1016/j.matpr.2021.06.365.
  • F. Rosetblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Frankfurt Institute for Advanced Studies, p. 616, 1962. DOI:10.1007/978-3-642-70911-1_20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.