397
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Improving the energy absorption capacity of bending-dominated additively manufactured polylactic acid (PLA) lattices

&
Received 20 Aug 2023, Accepted 10 Sep 2023, Published online: 21 Sep 2023

References

  • Y. Tang, G. Dong, Q. Zhou, and Y. Zhao, Lattice structure design and optimization with additive manufacturing constraints, IEEE Trans. Automat. Sci. Eng., vol. 15, no. 4, pp. 1546–1562, 2018. DOI: 10.1109/TASE.2017.2685643.
  • R.M. Gorguluarslan, O.U. Gungor, S. Yıldız, and E. Erem, Energy absorption behavior of stiffness optimized graded lattice structures fabricated by material extrusion, Meccanica., vol. 56, no. 11, pp. 2825–2841, 2021. DOI: 10.1007/s11012-021-01404-5.
  • J. Lehman, and R. Lakes, Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization, Int. J. Mech. Mater. Des., vol. 9, no. 3, pp. 213–225, 2013. DOI: 10.1007/s10999-012-9210-x.
  • Q.C. Zhang, Y.J. Han, and C.Q. Chen, Ultralight X-type lattice sandwich structure (I): concept, fabrication and experimental characterization., Sci China, Ser E., vol. 39, pp. 1039–1046, 2009.
  • Q. Li, L. Zhan, X. Miao, L. Hu, E. Li, and T. Zou, Morning glory-inspired lattice structure with negative Poisson’s ratio effect, Int. J. Mech. Sci., vol. 232, pp. 107643, 2022. DOI: 10.1016/j.ijmecsci.2022.107643.
  • N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng, and H. Zhang, Failure and energy absorption characteristics of four lattice structures under dynamic loading, Materials & Design., vol. 169, pp. 107655, 2019. DOI: 10.1016/j.matdes.2019.107655.
  • F. Sun, C. Lai, and H. Fan, In-plane compression behavior and energy absorption of hierarchical triangular lattice structures, Materials & Design., vol. 100, pp. 280–290, 2016. DOI: 10.1016/j.matdes.2016.03.023.
  • D. Sharma, and S.S. Hiremath, Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: performance, challenges, and application, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5077–5107, 2022. DOI: 10.1080/15376494.2021.1948151.
  • T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, and D. Mohr, 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness, Adv. Mater., vol. 30, no. 45, pp. 1803334, 2018. DOI: 10.1002/adma.201803334.
  • G. Meyer, K. Schelleis, O. Weeger, and C. Mittelstedt, Tensile specimen design proposal for truss-based lattice structures, Mech. Adv. Mater. Struct., vol. 30, no. 21, pp. 4473–4500, 2023. DOI: 10.1080/15376494.2022.2097352.
  • H. Gharehbaghi, A. Farrokhabadi, and Z. Noroozi, Introducing a new hybrid surface strut-based lattice structure with enhanced energy absorption capacity, Mech. Adv. Mater. Struct., pp. 1–10, 2023. DOI: 10.1080/15376494.2023.2167246.
  • Z. Wang, X. Wang, T. Gao, and C. Shi, Mechanical behavior and deformation mechanism of triply periodic minimal surface sheet under compressive loading, Mech. Adv. Mater. Struct., vol. 28, no. 19, pp. 2057–2069, 2021. DOI: 10.1080/15376494.2020.1829756.
  • J.J. Andrew, J. Schneider, J. Ubaid, R. Velmurugan, N.K. Gupta, and S. Kumar, Energy absorption characteristics of additively manufactured plate-lattices under low- velocity impact loading, Int. J. Impact Eng., vol. 149, pp. 103768, 2021. DOI: 10.1016/j.ijimpeng.2020.103768.
  • B. Fan, Z. Xu, Y. Lin, and Z. Huang, Mechanical properties of a novel two-phase hybrid plate-lattice metamaterial, Mech. Adv. Mater. Struct., vol. 30, no. 23, pp. 4752–4763, 2023. DOI: 10.1080/15376494.2022.2104974.
  • Z. Dimitrovova, and L. Faria, New methodology to establish bounds on effective properties of cellular solids, Mech. Adv. Mat. & Struct., vol. 6, no. 4, pp. 331–346, 1999. DOI: 10.1080/107594199305494.
  • A. Coluccia, G. Jiang, G. Meyer, G. De Pasquale, and C. Mittelstedt, Nonlinear static and dynamic modeling of energy absorption lattsice structures behavior, Mech. Adv. Mater. Struct., vol. 30, no. 14, pp. 2838–2849, 2023. DOI: 10.1080/15376494.2022.2064016.
  • Z. Huang, B. Li, L. Ma, and Y. Li, Mechanical properties and energy absorption performance of bio-inspired dual architecture phase lattice structures, Mech. Adv. Mater. Struct., vol. 30, no. 9, pp. 1842–1852, 2023. DOI: 10.1080/15376494.2022.2045654.
  • H.N.G. Wadley, Multifunctional periodic cellular metals, Philos. Trans. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 31–68, 2006. DOI: 10.1098/rsta.2005.1697.
  • X. Cao, D. Xiao, Y. Li, W. Wen, T. Zhao, Z. Chen, Y. Jiang, and D. Fang, Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure, Thin. Walled Struct., vol. 148, pp. 106586, 2020. DOI: 10.1016/j.tws.2019.106586.
  • K. Refai, M. Montemurro, C. Brugger, and N. Saintier, Determination of the effective elastic properties of titanium lattice structures, Mech. Adv. Mater. Struct., vol. 27, no. 23, pp. 1966–1982, 2020. DOI: 10.1080/15376494.2018.1536816.
  • D. Qin, L. Sang, Z. Zhang, S. Lai and Y. Zhao, Compression performance and deformation behavior of 3D-printed PLA-based lattice structures, Polymers (Basel)., vol. 14, no. 5, pp. 1062, 2022. DOI: 10.3390/polym14051062.
  • R. Miralbes, N. Santamaria, D. Ranz, and J.A. Gomez, Mechanical properties of diamond lattice structures based on main parameters and strain rate, Mech. Adv. Mater. Struct., vol. 30, no. 18, pp. 3721–3733, 2023. DOI: 10.1080/15376494.2022.2081749.
  • F.N. Habib, P. Iovenitti, S.H. Masood, and M. Nikzad, Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology, Materials & Design., vol. 155, pp. 86–98, 2018. DOI: 10.1016/j.matdes.2018.05.059.
  • H. Niknam, and A.H. Akbarzadeh, Graded lattice structures: simultaneous enhancement in stiffness and energy absorption, Materials & Design., vol. 196, pp. 109129, 2020. DOI: 10.1016/j.matdes.2020.109129.
  • Z.P. Sun, Y.B. Guo, and V.P.W. Shim, Characterisation and modeling of additively-manufactured polymeric hybrid lattice structures for energy absorption, Int. J. Mech. Sci., vol. 191, pp. 106101, 2021. DOI: 10.1016/j.ijmecsci.2020.106101.
  • C. Tang, J. Liu, Y. Yang, Y. Liu, S. Jiang, and W. Hao, Effect of process parameters on mechanical properties of 3D printed PLA lattice structures, Compos. Part C: Open Access., vol. 3, pp. 100076, 2020. DOI: 10.1016/j.jcomc.2020.100076.
  • G. Dong, G. Wijaya, Y. Tang, and Y.F. Zhao, Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures, Addit. Manuf., vol. 19, pp. 62–72, 2018. DOI: 10.1016/j.addma.2017.11.004.
  • D. Syrlybayev, A. Perveen, and D. Talamona, Experimental investigation of mechanical properties and energy absorption capabilities of hybrid lattice structures manufactured using fused filament fabrication, Int. J. Adv. Manuf. Technol., vol. 125, no. 5–6, pp. 2833–2850, 2023. DOI: 10.1007/s00170-023-10922-3.
  • L. Xiao, W. Song, C. Wang, H. Liu, H. Tang, and J. Wang, Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure, Materials Science and Engineering: A., vol. 640, pp. 375–384, 2015. DOI: 10.1016/j.msea.2015.06.018.
  • T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, and M. Brandt, SLM lattice structures: properties, performance, applications and challenges, Materials & Design., vol. 183, pp. 108137, 2019. DOI: 10.1016/j.matdes.2019.108137.
  • S. Zhu, J. Hu, B. Wang, L. Ma, S. Wang, and L. Wu, A fully parameterized methodology for lattice materials with octahedron-based structures, Mech. Adv. Mater. Struct., vol. 28, no. 10, pp. 1035–1048, 2021. DOI: 10.1080/15376494.2019.1629048.
  • V. Brøtan, O. Fergani, K. Sorby, and T. Welo, Mechanical properties of biocompatible 316L steel rhombic dodecahedron lattice structures, In 2016 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2016.
  • K. Raz, Z. Chval, and F. Sedlacek, Compressive Strength Prediction of Quad-Diametral Lattice Structures, KEM., vol. 847, pp. 69–74, 2020. DOI: 10.4028/www.scientific.net/KEM.847.69.
  • R. Prithvirajan, C. Balakumar, and G. Arumaikkannu, Effect of strut diameter on compressive behaviour of selective laser sintered polyamide rhombic dodecahedron lattice, Mater. Today: proc., vol. 46, pp. 4482–4486, 2021. DOI: 10.1016/j.matpr.2020.09.684.
  • C. Bonatti, and D. Mohr, Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments, J. Mech. Phys. Solids., vol. 122, pp. 1–26, 2019. DOI: 10.1016/j.jmps.2018.08.022.
  • S.L. Taylor, A.E. Jakus, R.N. Shah, and D.C. Dunand, Iron and nickel cellular structures by sintering of 3D-printed oxide or metallic particle inks , Adv. Eng. Mater., vol. 19, no. 11, pp. 1600365, 2017. DOI: 10.1002/adem.201600365.
  • J. Nguyen, S-i Park, and D. Rosen, Heuristic optimization method for cellular structure design of light weight components, Int. J. Precis. Eng. Manuf., vol. 14, no. 6, pp. 1071–1078, 2013. DOI: 10.1007/s12541-013-0144-5.
  • D. Kang, S. Park, Y. Son, S. Yeon, S.H. Kim, and I. Kim, Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process, Materials & Design., vol. 175, pp. 107786, 2019. DOI: 10.1016/j.matdes.2019.107786.
  • V.S. Deshpande, M.F. Ashby, and N.A. Fleck, Foam topology: bending versus stretching dominated architectures, Acta Mater., vol. 49, no. 6, pp. 1035–1040, 2001. DOI: 10.1016/S1359-6454(00)00379-7.
  • M.C. Messner, Optimal lattice-structured materials, J. Mech. Phys. Solids., vol. 96, pp. 162–183, 2016. DOI: 10.1016/j.jmps.2016.07.010.
  • M.N. Islam, and A. Pramanik, Comparison of design of experiments via traditional and Taguchi Method, J. Adv. Manuf. Syst., vol. 15, no. 3, pp. 151–160, 2016. DOI: 10.1142/S0219686716500116.
  • G. Sun, J. Fang, X. Tian, G. Li, and Q. Li, Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design, Expert Syst. Appl., vol. 42, no. 9, pp. 4482–4492, 2015. DOI: 10.1016/j.eswa.2014.12.054.
  • M. Nalbant, H. Gökkaya, and G. Sur, Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials & Design., vol. 28, no. 4, pp. 1379–1385, 2007. DOI: 10.1016/j.matdes.2006.01.008.
  • R. Surace, L.A.C. De Filippis, A.D. Ludovico, and G. Boghetich, Application of Taguchi method for the multi-objective optimization of aluminium foam manufacturing parameters, Int. J. Mater. Form., vol. 3, no. 1, pp. 1–5, 2010. DOI: 10.1007/s12289-009-0409-9.
  • Porima Polymer Technologies, Tough PLA Filament. Accessed September 4, 2023. https://www.porima3d.com/en/porima-tough-pla-filament.
  • M. Zhao, X. Li, D.Z. Zhang, and W. Zhai, Design, mechanical properties and optimization of lattice structures with hollow prismatic struts, Int. J. Mech. Sci., vol. 238, pp. 107842, 2023. DOI: 10.1016/j.ijmecsci.2022.107842.
  • Z. Xu, E. Medori, F. Sarasini, and N. Razavi, Quasi-static behavior of 3D printed lattice structures of various scales, Procedia Struct. Integrity., vol. 33, pp. 578–585, 2021. DOI: 10.1016/j.prostr.2021.10.064.
  • G. He, H. Yang, T. Chen, Y. Ning, H. Zou and F. Zhu, Lattice structure design method aimed at energy absorption performance based on bionic design, Machines., vol. 10, no. 10, pp. 965, 2022. DOI: 10.3390/machines10100965.
  • L. Bai, J. Zhang, Y. Xiong, X. Chen, Y. Sun, C. Gong, H. Pu, X. Wu, and J. Luo, Influence of unit cell pose on the mechanical properties of Ti6Al4V lattice structures manufactured by selective laser melting, Addit. Manuf., vol. 34, pp. 101222, 2020. DOI: 10.1016/j.addma.2020.101222.
  • L. Xiao, W. Song, C. Wang, H. Tang, Q. Fan, N. Liu, and J. Wang, Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading, Int. J. Impact Eng., vol. 100, pp. 75–89, 2017. DOI: 10.1016/j.ijimpeng.2016.10.006.
  • G. Del Guercio, M. Galati, and A. Saboori, Electron beam melting of Ti-6Al-4V lattice structures: correlation between post heat treatment and mechanical properties, Int. J. Adv. Manuf. Technol., vol. 116, no. 11–12, pp. 3535–3547, 2021. DOI: 10.1007/s00170-021-07619-w.
  • J. Blaber, B. Adair, and A. Antoniou, Ncorr: open-source 2D digital image correlation matlab software, Exp. Mech., vol. 55, no. 6, pp. 1105–1122, 2015. DOI: 10.1007/s11340-015-0009-1.
  • H.Y. Sarvestani, A.H. Akbarzadeh, H. Niknam, and K. Hermenean, 3D printed architected polymeric sandwich panels: energy absorption and structural performance, Compos. Struct., vol. 200, pp. 886–909, 2018. DOI: 10.1016/j.compstruct.2018.04.002.
  • L. Bai, C. Gong, X. Chen, Y. Sun, L. Xin, H. Pu, Y. Peng, and J. Luo, Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations, Int. J. Mech. Sci., vol. 182, pp. 105735, 2020. DOI: 10.1016/j.ijmecsci.2020.105735.
  • R.T.L. Ferreira, I.C. Amatte, T.A. Dutra, and D. Bürger, Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers, Compos. Part B: Engin., vol. 124, pp. 88–100, 2017. DOI: 10.1016/j.compositesb.2017.05.013.
  • M. Wang, J. Zhang, and W. Wang, Compression and Deformation Behaviors of Hierarchical Circular-Cell Lattice Structure with Enhanced Mechanical Properties and Energy Absorption Capacity, Aerospace., vol. 9, no. 12, pp. 786, 2022. DOI: 10.3390/aerospace9120786.
  • L. Wei-Liem, On Latin hypercube sampling, Ann. Stat., vol. 24, no. 5, pp. 2058–2080, 1996.
  • S.N. Lophaven, H.B. Nielsen, and J. Søndergaard, DACE - A Matlab Kriging Toolbox, Version 2.0., 2002.
  • V.S. Sufiiarov, A.V. Orlov, E.V. Borisov, V.V. Sokolova, M.O. Chukovenkova, A.V. Soklakov, D.S. Mikhaluk, and A.A. Popovich, Design and mechanical properties simulation of graded lattice structures for additive manufacturing endoprostheses, Mech. Adv. Mater. Struct., vol. 28, no. 16, pp. 1656–1662, 2021. DOI: 10.1080/15376494.2019.1700432.
  • K. Sookchanchai, P. Promoppatum, and V. Uthaisangsuk, Load-carrying capacity of additively manufactured part using graded-topology infilled lattices structures, Mech. Adv. Mater. Struct., pp. 1–19, 2022. DOI: 10.1080/15376494.2022.2135145.
  • R. Miralbes, S. Higuera, D. Ranz, and J.A. Gomez, Comparative analysis of mechanical properties and energy absorption capabilities of functionally graded and non-graded thermoplastic sheet gyroid structures, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5142–5155, 2022. DOI: 10.1080/15376494.2021.1949509.
  • D.S.J. Al-Saedi, S.H. Masood, M. Faizan-Ur-Rab, A. Alomarah, and P. Ponnusamy, Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Materials & Design., vol. 144, pp. 32–44, 2018. DOI: 10.1016/j.matdes.2018.01.059.
  • I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, and R.J.M. Hague, A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting, Materials Science and Engineering: a., vol. 670, pp. 264–274, 2016. DOI: 10.1016/j.msea.2016.06.013.
  • L. Xiao, and W. Song, Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments, Int. J. Impact Eng., vol. 111, pp. 255–272, 2018. DOI: 10.1016/j.ijimpeng.2017.09.018.
  • L. Bai, X. Zhou, X. Chen, L. Xin, J. Zhang, J. Yang, K. Li, and Y. Sun, Influence of relative density distribution rules on the mechanical compression responses of additive manufactured Ti6Al4V graded lattice structures, Mech. Adv. Mater. Struct., vol. 30, no. 1, pp. 114–130, 2023. DOI: 10.1080/15376494.2021.2009600.
  • T. Tancogne-Dejean, A.B. Spierings, and D. Mohr, Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Mater., vol. 116, pp. 14–28, 2016. DOI: 10.1016/j.actamat.2016.05.054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.