164
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Development of high-performance nanostructured aluminum and its constitutive modeling

, , , &
Received 21 Dec 2022, Accepted 31 May 2023, Published online: 11 Oct 2023

References

  • A. Mallick, S. Vedantam, and L. Lu, Grain size dependent tensile behavior of Mg-3% Al alloy at elevated temperatures, Mater. Sci. Eng. A., vol. 515, no. 1–2, pp. 14–18, Jul. 2009. DOI: 10.1016/j.msea.2009.03.002.
  • X. Peng, M. Yu, and Y. Liu, Effect of nanotwin and dislocation pileup at twin boundary on dislocation emission from an interfacial collinear crack tip in nanocrystalline bimaterials, Mech. Adv. Mater. Struct., vol. 27, no. 12, pp. 965–974, Jun. 2020. DOI: 10.1080/15376494.2018.1502851.
  • S. Whalen, M. Olszta, C. Roach, J. Darsell, D. Graff, Md. Reza-E-Rabby, T. Roosendaal, W. Daye, T. Pelletiers, S. Mathaudhu, and N. Overman, High ductility aluminum alloy made from powder by friction extrusion, Materialia., vol. 6, pp. 100260, Jun. 2019. DOI: 10.1016/j.mtla.2019.100260.
  • Y.S. Han, and V. Tomar, An investigation into the influence of grain boundary misorientation on the tensile strength of SiC bicrystals, Mech. Adv. Mater. Struct., vol. 23, no. 5, pp. 494–502, May 2016. DOI: 10.1080/15376494.2014.984094.
  • L. Shen, and Z. Chen, Loading history effect on size-dependent shear strength of pure and nitrogen-doped ultrananocrystalline diamond, Mech. Adv. Mater. Struct., vol. 16, no. 7, pp. 504–515, Oct. 2009. DOI: 10.1080/15376490903133244.
  • A.K. Kushwaha, R. Maccione, M. John, S. Lanka, M. Misra, and P.L. Menezes, Influence of cryomilling on crystallite size of aluminum powder and spark plasma sintered component, Nanomaterials., vol. 12, no. 3, pp. 551, Feb. 2022. DOI: 10.3390/nano12030551.
  • J.K. Rana, D. Sivaprahasam, K.S. Raju, and V.S. Sarma, Microstructure and mechanical properties of nanocrystalline high-strength Al-Mg-Si (AA6061) alloy by high-energy ball milling and spark plasma sintering, Mater. Sci. Eng. A., vol. 527, no. 1–2, pp. 292–296, Dec. 2009. DOI: 10.1016/j.msea.2009.08.041.
  • A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, and H. Zhang, Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling, Int. J. Plast., vol. 22, no. 2, pp. 195–209, Feb. 2006. DOI: 10.1016/j.ijplas.2004.07.008.
  • H. Kuleyin, R. Gümruk, H. Yanar, M. Demirtaş, and G. Pürçek, The mechanical compression performance of ultra-fine-grained stainless steel pyramidal lattice core, Mech. Adv. Mater. Struct., vol. 28, no. 10, pp. 1073–1078, May 2021. DOI: 10.1080/15376494.2019.1631413.
  • G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, and R. Valiev, Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation, Philos. Mag. Lett., vol. 88, no. 6, pp. 459–466, Jun. 2008. DOI: 10.1080/09500830802186938.
  • D. Orlov, N. Kamikawa, and N. Tsuji, High pressure torsion to refine grains in pure aluminum up to saturation: mechanisms of structure evolution and their dependence on strain, Philos. Mag., vol. 92, no. 18, pp. 2329–2350, Jun. 2012. DOI: 10.1080/14786435.2012.671548.
  • J. Oh, S. Park, H.J. Bae, S. Son, H.S. Kim, J.B. Seol, H. Sung, and J.G. Kim, Mechanical properties and microstructural evolution of high-pressure torsion-processed Al7075 alloy at elevated temperatures, Mater. Sci. Eng. A., vol. 835, pp. 142692, Feb. 2022. DOI: 10.1016/j.msea.2022.142692.
  • K.M. Agarwal, R.K. Tyagi, V. Choubey, and K.K. Saxena, Mechanical behaviour of Aluminium Alloy AA6063 processed through ECAP with optimum die design parameters, Adv. Mater. Process. Technol., vol. 8, no. 2, pp. 1901–1915, Apr. 2022. DOI: 10.1080/2374068X.2021.1878705.
  • T. Khelfa, R. Lachhab, H. Azzeddine, Z. Chen, J.A. Muñoz, J.M. Cabrera-Marrero, F. Brisset, A.-L. Helbert, T. Baudin, and M. Khitouni, Effect of ECAP and subsequent annealing on microstructure, texture, and microhardness of an AA6060 aluminum alloy, J. Mater. Eng. Perform., vol. 30, pp. 1–18, Nov. 2021. DOI: 10.1007/s11665-021-06404-w.
  • T. Tański, P. Snopiński, and W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing, Mater. Manuf. Processes., vol. 32, no. 12, pp. 1368–1374, Sep. 2017. DOI: 10.1080/10426914.2016.1257131.
  • J. May, H.W. Hӧppel, and M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scr. Mater., vol. 53, no. 2, pp. 189–194, Jul. 2005. DOI: 10.1016/j.scriptamat.2005.03.043.
  • J. Su, Z.-B. Tang, C.-X. Wang, T. Ye, T. Suo, and Y.-L. Li, Compressive behavior and deformation kinetics of ultrafine-grained aluminum processed by equal channel angular pressing, Int. J. Smart Nano Mater., vol. 8, no. 1, pp. 56–77, Jan. 2017. DOI: 10.1080/19475411.2017.1300201.
  • I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, and P.D. Hodgson, Enhanced tensile ductility of an ultra-fine-grained aluminum alloy, Scr. Mater., vol. 58, no. 3, pp. 163–166, Feb. 2008. DOI: 10.1016/j.scriptamat.2007.09.057.
  • M. Alvand, M. Naseri, E. Borhani, and H. Abdollah-Pour, Nano/ultrafine-grained AA2024 alloy processed by accumulative roll bonding: a study of microstructure, deformation texture, and mechanical properties, J. Alloys Compd., vol. 712, pp. 517–525, Jul. 2017. DOI: 10.1016/j.jallcom.2017.04.117.
  • M.R. Morovvati, and B.M. Dariani, The effect of annealing on the formability of aluminum 1200 after accumulative roll bonding, J. Manuf. Process., vol. 30, pp. 241–254, Dec. 2017. DOI: 10.1016/j.jmapro.2017.09.013.
  • A. Böhner, V. Maier, K. Durst, H.W. Hӧppel, and M. Göken, Macro- and nanomechanical properties and strain rate sensitivity of accumulative roll-bonded and equal channel angular pressed ultrafine-grained materials, Adv. Eng. Mater., vol. 13, no. 4, pp. 251–255, Apr. 2011. DOI: 10.1002/adem.201000270.
  • H.L. Yu, C. Lu, A.K. Tieu, and C. Kong, Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding, Mater. Manuf. Processes., vol. 29, no. 4, pp. 448–453, Apr. 2014. DOI: 10.1080/10426914.2013.872259.
  • J.Q. Su, T.W. Nelson, and C.J. Sterling, Grain refinement of aluminum alloys by friction stir processing, Philos. Mag., vol. 86, no. 1, pp. 1–24, Jan. 2006. DOI: 10.1080/14786430500267745.
  • Z.Y. Ma, A.H. Feng, D.L. Chen, and J. Shen, Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci., vol. 43, no. 4, pp. 269–333, Jul. 2018. DOI: 10.1080/10408436.2017.1358145.
  • J.-Q. Su, T.W. Nelson, and C.J. Sterling, Friction stir processing of large-area bulk ultrafine-grained aluminum alloys, Scr. Mater., vol. 52, no. 2, pp. 135–140, Jan. 2005. DOI: 10.1016/j.scriptamat.2004.09.014.
  • C. Wang, F. Li, L. Wang, and H. Qiao, Review on modified and novel techniques of severe plastic deformation, Sci. China Technol. Sci., vol. 55, no. 9, pp. 2377–2390, Sep. 2012. DOI: 10.1007/s11431-012-4954-y.
  • E. Salur, A. Aslan, M. Kuntoğlu, and M. Acarer, Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle-reinforced aluminum matrix composites produced by powder metallurgy route, Adv. Powder Technol., vol. 32, no. 10, pp. 3826–3844, Oct. 2021. DOI: 10.1016/j.apt.2021.08.031.
  • Z.-F. Liu, Z.-H. Zhang, J.-F. Lu, A.V. Korznikov, E. Korznikova, and F.-C. Wang, Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum, Mater. & Design., vol. 64, pp. 625–630, Dec. 2014. DOI: 10.1016/j.matdes.2014.08.030.
  • J. Christudasjustus, C.S. Witharamage, G. Walunj, T. Borkar, and R.K. Gupta, The influence of spark plasma sintering temperatures on the microstructure, hardness, and elastic modulus of the nanocrystalline Al-xV alloys produced by high-energy ball milling, J. Mater. Sci. Technol., vol. 122, pp. 68–76, Sep. 2022. DOI: 10.1016/j.jmst.2022.02.008.
  • C.S. Vidyasagar, and D.B. Karunakar, Effect of spark plasma sintering and reinforcements on the formation of ultra-fine and nanograins in AA2024-TiB2-Y hybrid composites, Prog. Nat. Sci. Mater. Int., vol. 32, no. 1, pp. 79–86, Feb. 2022. DOI: 10.1016/j.pnsc.2021.07.001.
  • B.Q. Han, and E.J. Lavernia, Enhanced tensile ductility in a nanostructured Al-7.5% Mg alloy, Mater. Sci. Technol., vol. 21, no. 7, pp. 855–860, Jul. 2005. DOI: 10.1179/174328405X47618.
  • R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia, Deformation and activation volumes of cryomilled ultrafine-grained aluminum, Acta Mater., vol. 52, no. 14, pp. 4259–4271, Aug. 2004. DOI: 10.1016/j.actamat.2004.05.042.
  • F. Tang, C.P. Liao, B. Ahn, S.R. Nutt, and J.M. Schoenung, Thermal stability in nanostructured Al-5083/SiCp composites fabricated by cryomilling, Powder Metall., vol. 50, no. 4, pp. 307–312, Dec. 2007. DOI: 10.1179/174329007X189630.
  • T.A. Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, and T.S. Orlova, The effect of hardening by annealing in ultrafine-grained Al–0.4 Zr alloy: influence of Zr microadditives, Philos. Mag., vol. 99, no. 19, pp. 2424–2443, Oct. 2019. DOI: 10.1080/14786435.2019.1631501.
  • M.N. Borse, M. Manokaran, S.G. Yebaji, S. Chopra, A. Sourav, B. Majumdar, A. Babu, and S. Thangaraju, Development and characterization of a novel Y-Ti-O based aluminum nano-composite processed by high-energy ball-milling and spark plasma sintering, Mater. Charact., vol. 190, pp. 112013, Aug. 2022. DOI: 10.1016/j.matchar.2022.112013.
  • A.K. Kushwaha, M. Misra, and P.L. Menezes, Manufacturing bulk nanocrystalline Al-3Mg components using cryomilling and spark plasma sintering, Nanomaterials., vol. 12, no. 20, pp. 3618, Oct. 2022. DOI: 10.3390/nano12203618.
  • L. Cao, Y. Xie, Y. Luo, J. Liang, J. Wang, D. Zhang, and L. Wang, Effects of annealing and extrusion on the microstructure and tensile properties of ultrafine-grained Al fabricated by spark plasma sintering, Powder Metall., vol. 64, no. 5, pp. 412–424, Oct. 2021. DOI: 10.1080/00325899.2021.1928814.
  • B.Q. Han, E.J. Lavernia, and F.A. Mohamed, Tension and compression of bulk Al-7.5 wt% Mg alloy, Philos. Mag. Lett., vol. 83, no. 2, pp. 89–96, Jan. 2003. DOI: 10.1080/0950083021000048154.
  • L. Tan, Z. Wang, Y. Li, Y. Liu, and F. Liu, Strengthening the bimodal-grained powder metallurgy ferritic steels with Cu addition by aging hardening, Mater. Sci. Eng. A., vol. 800, pp. 140312, Jan. 2021. DOI: 10.1016/j.msea.2020.140312.
  • H.J. Choi, S.W. Lee, J.S. Park, and D.H. Bae, Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders, Scripta Mater., vol. 59, no. 10, pp. 1123–1126, Nov. 2008. DOI: 10.1016/j.scriptamat.2008.07.030.
  • P. Verma, R. Saha, and D. Chaira, Waste steel scrap to nanostructured powder and superior compact through powder metallurgy: powder generation, processing, and characterization, Powder Technol., vol. 326, pp. 159–167, Feb. 2018. DOI: 10.1016/j.powtec.2017.11.061.
  • A. Hua, Y. Su, Y. Cai, X. Wang, K. Liu, H. Cao, D. Zhang, and Q. Ouyang, Fabrication, microstructure characterization, and mechanical properties of B4C microparticles and SiC nanowires hybrid reinforced aluminum matrix composites, Mater. Charact., vol. 193, pp. 112243, Nov. 2022. DOI: 10.1016/j.matchar.2022.112243.
  • A. El-Ghazaly, G. Anis, and H.G. Salem, Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite, Compos. Part A: Appl. Sci. Manuf., vol. 95, pp. 325–336, Apr. 2017. DOI: 10.1016/j.compositesa.2017.02.006.
  • R. Xu, Z. Tan, D. Xiong, G. Fan, Q. Guo, J. Zhang, Y. Su, Z. Li, and D. Zhang, Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling, Compos. Part A: Appl. Sci. Manuf., vol. 96, pp. 57–66, May 2017. DOI: 10.1016/j.compositesa.2017.02.017.
  • Y. Jiang, Z. Tan, R. Xu, G. Fan, D.-B. Xiong, Q. Guo, Y. Su, Z. Li, and D. Zhang, Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling, Compos. Part A: Appl. Sci. Manuf., vol. 111, pp. 73–82, Aug. 2018. DOI: 10.1016/j.compositesa.2018.05.022.
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation, Nat. Mater., vol. 1, no. 1, pp. 45–48, Sep. 2002. DOI: 10.1038/nmat700.
  • M. Nikfar, E. Taati, and M. Asghari, On the theoretical and molecular dynamic methods for natural frequencies of multilayer graphene nanosheets incorporating nonlocality and interlayer shear effects, Mech. Adv. Mater. Struct., vol. 29, no. 20, pp. 2873–2883, Jul. 2022. DOI: 10.1080/15376494.2021.1880675.
  • K. Kadau, P.S. Lomdahl, B.L. Holian, T.C. Germann, D. Kadau, P. Entel, D.E. Wolf, M. Kreth, and F. Westerhoff, Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum, Metall. Mater. Trans. A., vol. 35, no. 9, pp. 2719–2723, Sep. 2004. DOI: 10.1007/s11661-004-0217-2.
  • Q. Han, and X. Yi, High pressure-induced elimination of grain size softening in nanocrystalline metals: grain boundary strengthening overwhelming reduction of intragranular dislocation storage ability, Int. J. Plasticity., vol. 153, pp. 103261, Jun. 2022. DOI: 10.1016/j.ijplas.2022.103261.
  • A.S. Khan, and H. Zhang, Mechanically alloyed nanocrystalline iron and copper mixture: behavior and constitutive modeling over a wide range of strain rates, Int. J. Plasticity., vol. 16, no. 12, pp. 1477–1492, Jan. 2000. DOI: 10.1016/S0749-6419(00)00024-3.
  • Q. Zhan, T. Suo, C. Wang, K. Xie, and Z. Tang, Temperature sensitivity and prediction of the mechanical behaviors of ultrafine-grained aluminum under uniaxial compression, Acta Mech. Solida Sin., vol. 27, no. 4, pp. 373–382, Aug. 2014. DOI: 10.1016/S0894-9166(14)60045-8.
  • Y. Wei, and L. Anand, A constitutive model for powder-processed nanocrystalline metals, Acta Mater., vol. 55, no. 3, pp. 921–931, Feb. 2007. DOI: 10.1016/j.actamat.2006.09.014.
  • M. Rijesh, M.S. Sreekanth, A. Deepak, K. Dev, and A.O. Surendranathan, Effect of milling time on production of aluminium nanoparticle by high energy ball milling, Int. J. Mech. Eng. Technol., vol. 9, no. 8, pp. 646–652, Aug. 2018.
  • H. Abdoli, M. Ghanbari, and S. Baghshahi, Thermal stability of nanostructured aluminum powder synthesized by high-energy milling, Mater. Sci. Eng. A., vol. 528, no. 22–23, pp. 6702–6707, Aug. 2011. DOI: 10.1016/j.msea.2011.05.057.
  • H. Geng, X. Zhang, Y. Wang, Z. Wang, and Y. Zhang, Warm and hot stamping of high-strength aluminum alloy sheets using contact heating, Mech. Adv. Mater. Struct., pp. 1–10, Nov. 2022. DOI: 10.1080/15376494.2022.2145534.
  • K. Morsi, and A. Esawi, Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders, J. Mater. Sci., vol. 42, no. 13, pp. 4954–4959, Jul. 2007. DOI: 10.1007/s10853-006-0699-y.
  • S.J. Kim, H.W. Jung, M.W. Lee, Y.J. Kim, Y.H. Huh, and J.H. Park, Heat treatment effects on mechanical properties of Ni–Co alloy thin films, Mech. Adv. Mater. Struct., vol. 26, no. 19, pp. 1589–1595, Oct. 2019. DOI: 10.1080/15376494.2018.1444217.
  • S. Varam, K.V. Rajulapati, and K.B.S. Rao, Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation, J. Alloys Compd., vol. 585, pp. 795–799, Feb. 2014. DOI: 10.1016/j.jallcom.2013.09.116.
  • S.I. Ahmed, K.A. Mkhoyan, and K.M. Youssef, The activation of deformation mechanisms for improved tensile properties in nanocrystalline aluminum, Mater. Sci. Eng. A., vol. 777, pp. 139069, Mar. 2020. DOI: 10.1016/j.msea.2020.139069.
  • M.R. Akbarpour, F.S. Torknik, and S.A. Manafi, Enhanced compressive strength of nanostructured aluminum reinforced with SiC nanoparticles and investigation of strengthening mechanisms and fracture behavior, J. Materi. Eng. Perform., vol. 26, no. 10, pp. 4902–4909, Oct. 2017. DOI: 10.1007/s11665-017-2871-8.
  • M. Jafari, M.H. Enayati, M.H. Abbasi, and F. Karimzadeh, Compressive and wear behaviors of bulk nanostructured Al2024 alloy, Mater. Des., vol. 31, no. 2, pp. 663–669, Feb. 2010. DOI: 10.1016/j.matdes.2009.08.020.
  • J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A., vol. 626, pp. 400–405, Feb. 2015. DOI: 10.1016/j.msea.2014.12.102.
  • H.M. Ledbetter, and R.P. Reed, Elastic properties of metals and alloys, I. Iron, nickel, and iron-nickel alloys, J. Phys. Chem. Ref. Data., vol. 2, no. 3, pp. 531–618, Jul. 1973. DOI: 10.1063/1.3253127.
  • A.S. Shedbale, I.V. Singh, B.K. Mishra, and K. Sharma, Evaluation of mechanical properties using spherical ball indentation and coupled finite element–element-free Galerkin approach, Mech. Adv. Mater. Struct., vol. 23, no. 7, pp. 832–843, Jul. 2016. DOI: 10.1080/15376494.2015.1029171.
  • A.S. Shedbale, I.V. Singh, and B.K. Mishra, Indentation behavior of metal matrix composites reinforced with arbitrary shape particles using a coupled FE-EFG approach, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4427–4444, Oct. 2022. DOI: 10.1080/15376494.2021.1931580.
  • J. Qiu, Z. Wang, T. Jin, M. Jiao, X. Li, X. Shu, and F. Yang, Investigation on the indentation mechanical performance of aluminum honeycombs, Mech. Adv. Mater. Struct., vol. 29, no. 18, pp. 2607–2616, Jul. 2022. DOI: 10.1080/15376494.2021.1871792.
  • Y. Xin, H. Yan, S. Yang, H. Li, and S. Cheng, Experimental study on the indentation of epoxy resin–aluminum honeycomb composite sandwich panel, Mech. Adv. Mater. Struct., vol. 28, no. 9, pp. 904–918, May 2021. DOI: 10.1080/15376494.2019.1605009.
  • J. Deng, X. Xie, M. Zhang, and N. Liao, Effect of Young’s modulus on fracture characteristics of SiCO-SiCN multi-layer films by XFEM simulations of nano-indentation, Mech. Adv. Mater. Struct., vol. 30, no. 16, pp. 3225–3230, Jun. 2023. DOI: 10.1080/15376494.2022.2070806.
  • F. Mozafari, P. Thamburaja, N. Moslemi, and A. Srinivasa, Finite-element simulation of multi-axial fatigue loading in metals based on a novel experimentally-validated microplastic hysteresis-tracking method, Finite Elem. Anal. Des., vol. 187, pp. 103481, May 2021. DOI: 10.1016/j.finel.2020.103481.
  • F. Mozafari, and I. Temizer, Computational homogenization of fatigue in additively manufactured microlattice structures, Comput. Mech., vol. 71, no. 2, pp. 367–384, Feb. 2023. DOI: 10.1007/s00466-022-02243-1.
  • F. Mozafari, P. Thamburaja, A.R. Srinivasa, and N. Moslemi, A rate independent inelasticity model with smooth transition for unifying low-cycle to high-cycle fatigue life prediction, Int. J. Mech. Sci., vol. 159, pp. 325–335, Aug. 2019. DOI: 10.1016/j.ijmecsci.2019.05.017.
  • K. Sarah, P. Thamburaja, A. Srinivasa, and J.N. Reddy, Numerical simulations of damage and fracture in viscoelastic solids using a nonlocal fracture criterion, Mech. Adv. Mater. Struct., vol. 27, no. 13, pp. 1085–1097, Jul. 2020. DOI: 10.1080/15376494.2020.1716414.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.