170
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

An experimental and numerical study on optimization of number and position of the clamps in sheet metals fixture

, , , , , , & show all
Received 14 May 2023, Accepted 28 Sep 2023, Published online: 23 Oct 2023

References

  • S. Kashyap and W. DeVries, Finite element analysis and optimization in fixture design, Struct. Multidiscip. Optim., vol. 18, no. 2–3, pp. 193–201, 1999. DOI: 10.1007/s001580050120.
  • K. Krishnakumar and S.N. Melkote, Machining fixture layout optimization using the genetic algorithm, Int. J. Mach. Tools Manuf., vol. 40, no. 4, pp. 579–598, 2000. DOI: 10.1016/S0890-6955(99)00072-3.
  • K. Kulankara, S. Satyanarayana, and S.N. Melkote, Iterative fixture layout and clamping force optimization using the genetic algorithm, J. Manuf. Sci. Eng., vol. 124, no. 1, pp. 119–125, 2002. DOI: 10.1115/1.1414127.
  • B. Shirinzadeh, Flexible fixturing for workpiece positioning and constraining, Assem. Autom., vol. 22, no. 2, pp. 112–120, 2002. DOI: 10.1108/01445150210423143.
  • Y. Zheng, Y. Rong, and Z. Hou, A finite element analysis for stiffness of fixture units, ASME 2003 International Mechanical Engineering Congress and Exposition: American Society of Mechanical Engineers, pp. 309–317, 2003. DOI: 10.1115/IMECE2003-43226.
  • M. Shakeri, M.H. Yas, and M.G. Gol, Optimal stacking sequence of laminated cylindrical shells using genetic algorithm, Mech. Adv. Mater. Struct., vol. 12, no. 4, pp. 305–312, 2005. DOI: 10.1080/15376490590898501.
  • J. Corona-Castuera, R. Rios-Cabrera, I. Lopez-Juarez, and M. Peña-Cabrera, An approach for intelligent fixtureless assembly: Issues and experiments, Mexican International Conference on Artificial Intelligence, pp. 1052–1061, 2005.
  • N. Kaya, Machining fixture locating and clamping position optimization using genetic algorithms, Comput. Ind., vol. 57, no. 2, pp. 112–120, 2006. DOI: 10.1016/j.compind.2005.05.001.
  • T. Aoyama, Y. Kakinuma, and I. Inasaki, Optimization of fixture layout by means of the genetic algorithm, Intelligent Production Machines and Systems-2nd I* PROMS Virtual International Conference, July 3–14, 2006.
  • G. Qin, W. Zhang, and M. Wan, Analysis and optimal design of fixture clamping sequence, J. Manuf. Sci. Eng., vol. 128, no. 2, pp. 482–493, 2006. DOI: 10.1115/1.2162908.
  • S.G. Liu, L. Zheng, Z.-H. Zhang, Z.-Z. Li, and D.-C. Liu, Optimization of the number and positions of fixture locators in the peripheral milling of a low-rigidity workpiece, Int. J. Adv. Manuf. Technol., vol. 33, no. 7–8, pp. 668–676, 2007. DOI: 10.1007/s00170-006-0507-5.
  • W. Chen, L. Ni, and J. Xue, Deformation control through fixture layout design and clamping force optimization, Int. J. Adv. Manuf. Technol., vol. 38, no. 9–10, pp. 860–867, 2008. DOI: 10.1007/s00170-007-1153-2.
  • Y. Yeung and X. Chen, 3-D fixture layout design system based on genetic algorithm, Proceedings of the 16th International Conference on Automation & Computing, Pacilantic International Ltd., pp. 238–243, 2010.
  • S. Vishnupriyan, M. Majumder, and K. Ramachandran, Optimization of machining fixture layout for tolerance requirements under the influence of locating errors, Int. J. Eng. Sci. Technol., vol. 2, no. 1, pp. 152–161, 2010. DOI: 10.4314/ijest.v2i1.59107.
  • I. Bruant, L. Gallimard, and S. Nikoukar, Optimization of piezoelectric sensors location and number using a genetic algorithm, Mech. Adv. Mater. Struct., vol. 18, no. 7, pp. 469–475, 2011. DOI: 10.1080/15376494.2011.604600.
  • Y.W. Sun, C.T. Zhang, and Q. Guo, Optimization research on workpiece clamping deformation using genetic algorithm and finite element method, AMR., vol. 189–193, pp. 2153–2160, 2011. DOI: 10.4028/www.scientific.net/AMR.189-193.2153.
  • K.S. Kumar and G. Paulraj, Genetic algorithm based deformation control and clamping force optimisation of workpiece fixture system[J], Int. J. Prod. Res., vol. 49, no. 7, pp. 1903–1935, 2011. DOI: 10.1080/00207540903499438.
  • Z. Liu, M.Y. Wang, K. Wang, X. Mei, and G. Hua, One fast fixture layout and clamping force optimization method based on finite element method, ASME/ISCIE 2012 International Symposium on Flexible Automation, American Society of Mechanical Engineers, pp. 9–15, 2012. DOI: 10.1115/ISFA2012-7130.
  • S. Selvakumar, K. Arulshri, and K. Padmanaban, Machining fixture layout optimisation using genetic algorithm and artificial neural network, IJMR., vol. 8, no. 2, pp. 171–195, 2013. DOI: 10.1504/IJMR.2013.053286.
  • W. Cai, S.J. Hu, and J. Yuan, Deformable sheet metal fixturing: Principles, algorithms, and simulations, J. Manuf. Sci. Eng., vol. 118, no. 3, pp. 318–324, 1996. DOI: 10.1115/1.2831031.
  • B. Li and B. Shiu, Principle and simulation of fixture configuration design for sheet metal assembly with laser welding, part 2: Optimal configuration design with genetic algorithm,Int. J. Adv. Manuf. Technol., vol. 18, no. 4, pp. 276–284, 2001. DOI: 10.1007/s001700170068.
  • Y.G. Liao, A genetic algorithm-based fixture locating positions and clamping schemes optimization, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., vol. 217, no. 8, pp. 1075–1083, 2003. DOI: 10.1177/095440540321700805.
  • G. Prabhaharan, K. Padmanaban, and R. Krishnakumar, Machining fixture layout optimization using FEM and evolutionary techniques, Int. J. Adv. Manuf. Technol., vol. 32, no. 11-12, pp. 1090–1103, 2007. DOI: 10.1007/s00170-006-0441-6.
  • W. Chen, H. Chen, L. Ni, and J. Xue, A dual optimization model of fixture design for the thin-walled workpiece, Computer-Aided Design and Computer Graphics, 2007 10th IEEE International Conference on, 521–524, 2007.
  • K. Padmanaban, K. Arulshri, and G. Prabhakaran, Machining fixture layout design using ant colony algorithm based continuous optimization method, Int. J. Adv. Manuf. Technol., vol. 45, no. 9–10, pp. 922–934, 2009. DOI: 10.1007/s00170-009-2035-6.
  • G. Michalos, S. Makris, N. Papakostas, D. Mourtzis, and G. Chryssolouris, Automotive assembly technologies review: Challenges and outlook for a flexible and adaptive approach, CIRP J. Manuf. Sci. Technol., vol. 2, no. 2, pp. 81–91, 2010. DOI: 10.1016/j.cirpj.2009.12.001.
  • W. Huang, Z. Kong, and A. Chennamaraju, Robust design for fixture layout in multistation assembly systems using sequential space filling methods, J. Comput. Inf. Sci. Eng., vol. 10, no. 4, pp. 041001, 2010. DOI: 10.1115/1.3503880.
  • H. Cheng, Y. Li, K.F. Zhang, C. Luan, Y.-W. Xu, and M.-H. Li, Optimization method of fixture layout for aeronautical thin-walled structures with automated riveting, Assem. Autom., vol. 32, no. 4, pp. 323–332, 2012. DOI: 10.1108/01445151211262384.
  • Z. Ahmad, M. Zoppi, and R. Molfino, Fixture layout optimization using element strain energy and genetic algorithm, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng., vol. 7, no. 10, pp. 1924–1930, 2013.
  • Z. Ahmad, M. Zoppi, and R. Molfino, Fixture layout optimization for large metal sheets using genetic algorithm. Proceedings of World Academy of Science, Engineering and Technology, vol. 79. World Academy of Science, Engineering and Technology (WASET), p. 994, 2013.
  • Y. Xing and Y. Wang, Fixture layout design based on two-stage method for sheet metal components, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., vol. 227, no. 1, pp. 162–172, 2013. DOI: 10.1177/0954405412463132.
  • L. Xiong, R. Molfino, and M. Zoppi, Fixture layout optimization for flexible aerospace parts based on self-reconfigurable swarm intelligent fixture system, Int. J. Adv. Manuf. Technol., vol. 66, no. 9–12, pp. 1305–1313, 2013. DOI: 10.1007/s00170-012-4408-5.
  • M. Vasundara and K. Padmanaban, Recent developments on machining fixture layout design, analysis, and optimization using finite element method and evolutionary techniques, Int J Adv Manuf Technol., vol. 70, no. 1–4, pp. 79–96, 2014. DOI: 10.1007/s00170-013-5249-6.
  • C. Lu and H.W. Zhao, Fixture layout optimization for deformable sheet metal workpiece, Int J Adv Manuf Technol., vol. 78, no. 1–4, pp. 85–98, 2015. DOI: 10.1007/s00170-014-6647-0.
  • B. Yang, Z. Wang, Y. Yang, Y. Kang, and X. Li, Optimum fixture locating layout for sheet metal part by integrating kriging with cuckoo search algorithm, Int. J. Adv. Manuf. Technol., vol. 91, no. 1–4, pp. 327–340, 2017. DOI: 10.1007/s00170-016-9638-5.
  • B. Yang, Z. Wang, Y. Yang, Y. Yang, Y. Kang, and C. Li, Optimization of fixture locating layout for sheet metal part by cuckoo search algorithm combined with finite element analysis, Adv. Mech. Eng., vol. 9, no. 6, pp. 168781401770483, 2017. DOI: 10.1177/1687814017704836.
  • C. Lu and Y. Wang, Positioning variation analysis for the sheet metal workpiece with N-2-1 locating scheme, Int. J. Adv. Manuf. Technol., vol. 89, no. 9–12, pp. 3021–3035, 2017. DOI: 10.1007/s00170-016-9284-y.
  • Z. Ahmad, T. Sultan, M. Asad, M. Zoppi, and R. Molfino, Fixture layout optimization for multi point respot welding of sheet metals, J. Mech. Sci. Technol., vol. 32, no. 4, pp. 1749–1760, 2018. DOI: 10.1007/s12206-018-0331-5.
  • S.G. Chavan and A.B. Shinde, Fixture design and work piece deformation optimization using the iterative simplex algorithm, J. Optim. Ind. Eng., vol. 12, no. 2, pp. 33–44, 2019.
  • Z. Ma, Y. Xing, and M. Hu, Fixture layout optimization based on hybrid algorithm of Gaot and Rbf-Nn for sheet metal parts, Proceedings of the 2019 International Conference on Artificial Intelligiance and Advanced Manufacturing, Vol. 27, pp. 1–7, 2019. DOI: 10.1145/3358331.3358358.
  • M. Khodabandeh, M.G. Saryazdi, and A. Ohadi, Multi-objective optimization of auto-body fixture layout based on an ant colony algorithm, Proc. IMechE Part C: J. Mech. Eng. Sci., vol. 234, no. 6, pp. 1137–1145, 2020. DOI: 10.1177/0954406219891756.
  • K.M. Arunraja, S. Selvakumar, and P. Praveen, Optimisation of welding fixture layout for sheet metal components using DOE, IJPQM., vol. 28, no. 4, pp. 522–558, 2019. DOI: 10.1504/IJPQM.2019.103703.
  • A.R. Aderiani, K. Warmefjord, R. Soderberg, L. Lindkvist, and B. Lindau, Optimal design of fixture layouts for compliant sheet metal assemblies, Int. J. Adv. Manuf. Technol., vol. 110, no. 7–8, pp. 2181–2201, 2020. DOI: 10.1007/s00170-020-05954-y.
  • M. Vinosh, T.N. Raj, and M. Prasath, Optimization of sheet metal resistance spot welding process fixture design, Mater. Today: Proc., vol. 45, pp. 1696–1700, 2021. DOI: 10.1016/j.matpr.2020.08.567.
  • P. Praveen, S. Selvakumar, and K.M. Arunraja, Machining fixture layout optimization using symbiotic organisms search algorithm, Tierärztliche Praxis., vol. 40, pp. 1286–1295, 2020.
  • J. Du, C. Liu, J. Liu, Y. Zhang, and J. Shi, Optimal design of fixture layout for compliant part with application in ship curved panel assembly, J. Manuf. Sci. Eng., vol. 143, no. 6, pp. 061007, 2021. DOI: 10.1115/1.4048954.
  • K.M. Arunraja and S. Selvakumar, 3-3-1 machining fixture scheme optimization using genetic algorithm and FEM, AIP Conf. Proc., 2021. 2387, 110003. DOI: 10.1063/5.0068592.
  • C. Li, Z. Wang, H. Tong, S. Tian, and L. Yang, Optimization of the number and positions of fixture locators for curved thin-walled parts by whale optimization algorithm, J. Phys.: Conf. Ser., vol. 2174, no. 1, pp. 012013, 2022. DOI: 10.1088/1742-6596/2174/1/012013.
  • Y. Liu, J. Li, T. Wang, Y. Ding, and G. Wang, Study on the friction resistance calculation method of a flexible shaft wire rope based on genetic algorithm, Mech. Adv. Mater. Struct., vol. 29, no. 19, pp. 2836–2844, 2022. DOI: 10.1080/15376494.2021.1879329.
  • M.B. Ali, Z. Ahmad, S. Alshahrani, M.R. Younis, I. Talib, and M. Imran, A case study: Layout optimization of three gorges wind farm Pakistan, using genetic algorithm, Sustainability, vol. 14, no. 24, pp. 16960, 2022. DOI: 10.3390/su142416960.
  • A.Y. Khan, Z. Ahmad, T. Sultan, S. Alshahrani, K. Hayat, and M. Imran, Optimization of photovoltaic panel array configurations to reduce lift force using genetic algorithm and CFD, Energies, vol. 15, no. 24, pp. 9580, 2022. DOI: 10.3390/en15249580.
  • S.A. Haseeb, Z. Ahmad, T.N. Dief, S.K. Alnuaimi, T. Sultan, K. Hayat, M.R. Younis, and M. Zoppi, Fixture layout optimization of sheet metals by integrating topology optimization into genetic algorithm, Appl. Sci., vol. 13, no. 7, pp. 4395, 2023. DOI: 10.3390/app13074395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.