136
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Thermoelastic response analysis of a functionally graded rotating piezoelectric rod considering nonlocal effects and Kelvin–Voigt viscoelastic model

& ORCID Icon
Received 13 Oct 2023, Accepted 13 Oct 2023, Published online: 26 Oct 2023

References

  • M.A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956.
  • H.M. Youssef, Theory of generalized thermoelasticity with fractional order strain, J. Vib. Control, vol. 22, no. 18, pp. 3840–3857, 2016. DOI: 10.1177/1077546314566837.
  • H.W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A.E. Green and K.A. Lindsay, Thermoelasticity, J. Elast., vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A.E. Green and P.M. Naghdi, A re-examination of the basic postulate of thermo-mechanics, Proc. R. Soc. Lond., vol. 432, no. 1885, pp. 171–194, 1991.
  • A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation, J. Elast., vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications [M], Gordon and Breach, New York, 1993.
  • M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., vol. 1, no. 2, pp. 73–85, 2015.
  • H.M. Youssef, Theory of fractional order generalized thermoelasticity, J. Heat Transf., vol. 132, no. 6, pp. 061301, 2010. DOI: 10.1115/1.4000705.
  • H.H. Sherief, A.M.A. El-Sayed, and A.M. Abd El-Latief, Fractional order theory of thermoelasticity, Int. J. Solids. Struct., vol. 47, no. 2, pp. 269–275, 2010. DOI: 10.1016/j.ijsolstr.2009.09.034.
  • M.A. Ezzat, Theory of fractional order in generalized thermoelectric MHD, Appl. Math. Model., vol. 35, no. 10, pp. 4965–4978, 2011. DOI: 10.1016/j.apm.2011.04.004.
  • M.A. Ezzat, Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer, Phys. B, vol. 406, no. 1, pp. 30–35, 2011. DOI: 10.1016/j.physb.2010.10.005.
  • M.A. Ezzat, A.S. El-Karamany, A.A. El-Bary, and M.A. Fayik, Fractional calculus in one-dimensional isotropic thermo-viscoelasticity, C. R. Mecanique, vol. 341, no. 7, pp. 553–566, 2013. DOI: 10.1016/j.crme.2013.04.001.
  • Y. Ma and T. He, The transient response of a functionally graded piezoelectric rod subjected to a moving heat source under fractional order theory of thermoelasticity, Mech. Adv. Mater. Struct., vol. 24, no. 9, pp. 789–796, 2017. DOI: 10.1080/15376494.2016.1196783.
  • Z. Xue, H. Zhang, and J. Liu, Memory effects on the thermal fracture behavior of cracked plates via fractional heat conduction models, Mech. Adv. Mater. Struct., pp. 1–10, 2023. DOI: 10.1080/15376494.2023.2248140.
  • A. Hobiny and I. Abbas, The effect of fractional derivatives on thermo-mechanical interaction in biological tissues during hyperthermia treatment using eigenvalues approach, Fractal Fract., vol. 7, no. 6, pp. 432, 2023. DOI: 10.3390/fractalfract7060432.
  • Y. Han, L. Tian, and T. He, Investigation on the thermoelastic response of a porous microplate in a modified fractional-order heat conduction model incorporating the nonlocal effect, Mech. Adv. Mater. Struct., pp. 1–12, 2023. DOI: 10.1080/15376494.2023.2238215.
  • A.E. Abouelregal, S.W. Yao, and H. Ahmad, Analysis of a functionally graded thermopiezoelectric finite rod excited by a moving heat source, Res. Phys., vol. 19, pp. 103389, 2020. DOI: 10.1016/j.rinp.2020.103389.
  • A. Taghizadeh and Y. Kiani, Generalized thermoelasticity of apiezoelectric layer, J. Therm. Stress., vol. 42, no. 7, pp. 863–873, 2019. DOI: 10.1080/01495739.2019.1593905.
  • C. Li, H. Guo, X. Tian, and T. He, Generalized piezoelectric thermoelasticity problems with strain rate and transient thermo‐electromechanical responses analysis, Z Angew Math Mech., vol. 100, no. 5, pp. e201900067, 2020. DOI: 10.1002/zamm.201900067.
  • M.H. Kargarnovin, R. Hashemi, and A.A. Emami, Electroelastic analysis of FG piezoelectric structures under thermo-electro-mechanical loadings, Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 11–27, 2013. DOI: 10.1080/15376494.2011.581411.
  • R. Kumar, A. Singh, and M. Tiwari, Life enhancement of cracked structure by piezoelectric patching underneath thermo-mechanical loading environment, " Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6231–6241, 2022. DOI: 10.1080/15376494.2021.1974617.
  • R.D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates, Int. J. Solids Struct., vol. 10, no. 6, pp. 625–637, 1974. DOI: 10.1016/0020-7683(74)90047-X.
  • W. Nowacki, Some general theorems of thermopiezoelectricity, J. Therm. Stress., vol. 1, no. 2, pp. 171–182, 1978. DOI: 10.1080/01495737808926940.
  • D.S. Chandrasekhariah, A temperature rate dependent theory of piezoelectricity, J. Therm. Stress., vol. 7, no. 3–4, pp. 293–306, 1984.
  • C. Li, X. Tian, and T. He, New insights on piezoelectric thermoelastic coupling and transient thermo-electromechanical responses of multi-layered piezoelectric laminated composite structure, Eur. J. Mech. A Solid, vol. 91, pp. 104416, 2022. DOI: 10.1016/j.euromechsol.2021.104416.
  • Z. Yang, Z. Zhang, C. Liu, C. Gao, W. Chen, and C. Zhang, Analysis of a hollow piezoelectric semiconductor composite cylinder under a thermal loading, Mech. Adv. Mater. Struct., vol. 30, no. 10, pp. 2037–2046, 2023. DOI: 10.1080/15376494.2022.2048424.
  • V. Gupta and M.S. Barak, Fractional and MDD analysis of piezo-photo-thermo-elastic waves in semiconductor medium, Mech. Adv. Mater. Struct., pp. 1–16, 2023. DOI: 10.1080/15376494.2023.2238201.
  • L. Xia, R. Wang, G. Chen, K. Asemi, and A. Tounsi, The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity, Adv. Nan. Res., vol. 14, no. 4, pp. 375–389, 2023.
  • H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, and A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position, J Braz. Soc. Mech. Sci. Eng., vol. 38, no. 1, pp. 265–275, 2016. DOI: 10.1007/s40430-015-0354-0.
  • R. Kumar, A. Lal, and B.M. Sutaria, Free vibration of porous functionally graded sandwich plates with hole, J. Vib. Eng. Technol., pp. 1–17, 2022. DOI: 10.1007/s42417-022-00810-7.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, Refined and advanced models for multilayered plates and shells embedding functionally graded material layers, Mech. Adv. Mater. Struct., vol. 17, no. 8, pp. 603–621, 2010. DOI: 10.1080/15376494.2010.517730.
  • E. Carrera, M. Cinefra, and P. Nali, MITC technique extended to variable kinematic multilayered plate elements, Compos. Struct., vol. 92, no. 8, pp. 1888–1895, 2010. DOI: 10.1016/j.compstruct.2010.01.009.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, Effects of thickness stretching in functionally graded plates and shells, Compos. B: Eng., vol. 42, no. 2, pp. 123–133, 2011. DOI: 10.1016/j.compositesb.2010.10.005.
  • N. An, T. Song, and G. Hou, Dynamic interaction between complex defect and crack in functionally graded magnetic-electro-elastic bi-materials, Mech. Adv. Mater. Struct., vol. 30, no. 13, pp. 2748–2764, 2023. DOI: 10.1080/15376494.2022.2062631.
  • Z.Z. Wang, T. Wang, Y. Ding, and L. Ma, A simple refined plate theory for the analysis of bending, buckling and free vibration of functionally graded porous plates reinforced by graphene platelets, Mech. Adv. Mater. Struct., pp. 1–18, 2022. pp. DOI: 10.1080/15376494.2022.2141383.
  • Y. Heydarpour, P. Malekzadeh, R. Dimitri, and F. Tornabene, Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers, Appl. Sci., vol. 10, no. 4, pp. 1397, 2020. DOI: 10.3390/app10041397.
  • W. Yang and Z. Chen, Thermo-viscoelastic response of a cracked, functionally graded half-plane under a thermal shock, Eng. Fract. Mech., vol. 206, pp. 267–277, 2019. DOI: 10.1016/j.engfracmech.2018.11.042.
  • Y.Z. Wang, D. Liu, Q. Wang, and J.Z. Zhou, Asymptotic analysis of thermoelastic response in functionally graded thin plate subjected to a transient thermal shock, Compos. Struct., vol. 139, pp. 233–242, 2016. DOI: 10.1016/j.compstruct.2015.12.014.
  • I.M. Tayel, Generalized functionally graded thermoelastic layer under the effect of volumetric absorption of laser radiation, Mech. Based. Des. Struct. Mach., vol. 50, no. 10, pp. 3533–3548, 2022. DOI: 10.1080/15397734.2020.1814155.
  • M. Mekerbi, R. Bachir Bouiadjra, S. Benyoucef, M.M. Selim, A. Tounsi, and M. Hussain, Micromechanical models for analyzing bending of porous/perfect FG plates in a hygro-thermomechanical environment by a quasi-3D theory, Mech. Compos. Mater., vol. 59, no. 4, pp. 693–712, 2023. DOI: 10.1007/s11029-023-10125-7.
  • S.K. Chaudhary, V.R. Kar, and K.K. Shukla, Geometrically nonlinear large-deflection analysis of heated functionally graded composite panels with single and multiple perforations, Mech. Adv. Mater. Struct., vol. 30, no. 21, pp. 4329–4346, 2023. DOI: 10.1080/15376494.2022.2092798.
  • H. Guo, F. Shang, X. Tian, and T. He, An analytical study of transient thermo-viscoelastic responses of viscoelastic laminated sandwich composite structure for vibration control, Mech. Adv. Mater. Struct., vol. 29, no. 2, pp. 171–181, 2022. DOI: 10.1080/15376494.2020.1756544.
  • A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
  • D.S. Chandrasekharaiah, A generalized linear thermoelasticity theory for piezoelectric media, Acta Mech., vol. 71, no. 1–4, pp. 39–49, 1988. DOI: 10.1007/BF01173936.
  • M.A. Ezzat, S.M. Ezzat, and N.S. Alduraibi, On size-dependent thermo-viscoelasticity theory for piezoelectric materials, Wave Random Complex, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2043569.
  • Y. Lei, S. Adhikari, and M.I. Friswell, Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams, Int. J. Eng. Sci., vol. 66–67, pp. 1–13, 2013. DOI: 10.1016/j.ijengsci.2013.02.004.
  • A.E. Abouelregal and H.M. Sedighi, Magneto-thermoelastic behaviour of a finite viscoelastic rotating rod by incorporating Eringen’s theory and heat equation including Caputo–Fabrizio fractional derivative, Eng. Comput., vol. 39, no. 1, pp. 655–668, 2023. DOI: 10.1007/s00366-022-01645-2.
  • M. Aouadi, Generalized thermo-piezoelectric problems with temperature-dependent properties, Int. J. Solids Struct., vol. 43, no. 21, pp. 6347–6358, 2006. DOI: 10.1016/j.ijsolstr.2005.09.003.
  • R.D. Mindlin, Equation of high frequency of thermo-piezoelectric crystals plates, Springer, Wien, 1979.
  • M. Schoenberg and D. Censor, Elastic waves in rotating media, Quart. Appl. Math., vol. 31, no. 1, pp. 115–125, 1973. DOI: 10.1090/qam/99708.
  • P. Pal, P. Das, and M. Kanoria, Magneto-thermoelastic response in a functionally graded rotating medium due to a periodically varying heat source, Acta Mech., vol. 226, no. 7, pp. 2103–2120, 2015. DOI: 10.1007/s00707-015-1301-y.
  • R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. R. Soc. A, vol. 463, no. 2079, pp. 659–674, 2007. DOI: 10.1098/rspa.2006.1784.
  • J. Losada and J.J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., vol. 1, pp. 87–92, 2015.
  • G. Honig and U. Hirdes, A method for the numerical inversion of Laplace Transform, J. Comp. Appl. Math., vol. 10, no. 1, pp. 113–132, 1984. DOI: 10.1016/0377-0427(84)90075-X.
  • Y. Ootao, T. Akai, and Y. Tanigawa, Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow cylinder, J. Therm. Stress., vol. 31, no. 10, pp. 935–955, 2008. DOI: 10.1080/01495730802250508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.