290
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Effective elastic and strength properties of triply periodic minimal surfaces lattice structures by numerical homogenization

ORCID Icon, , ORCID Icon, &
Received 26 Sep 2023, Accepted 27 Oct 2023, Published online: 07 Nov 2023

References

  • M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, and F. Martina, Design for additive manufacturing: trends, opportunities, considerations, and constraints, CIRP Ann., vol. 65, no. 2, pp. 737–760, 2016. DOI: 10.1016/j.cirp.2016.05.004.
  • M.F. Ashby, and R.F.M. Medalist, The mechanical properties of cellular solids, Metall. Trans. A., vol. 14, no. 9, pp. 1755–1769, 1983. DOI: 10.1007/BF02645546.
  • I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, and I.A. Ashcroft, Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Addit. Manuf., vol. 16, pp. 24–29, 2017. DOI: 10.1016/j.addma.2017.04.003.
  • R. Hedayati, A.M. Leeflang, and A.A. Zadpoor, Additively manufactured metallic pentamode meta-materials, Appl. Phys. Lett., vol. 110, no. 9, pp. 091905, 2017. DOI: 10.1063/1.4977561.
  • L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, and W.F. Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf., vol. 23, pp. 505–515, 2018. DOI: 10.1016/j.addma.2018.08.007.
  • K.A. Khan, and R.K. Abu Al-Rub, Viscoelastic properties of architected foams based on the Schoen IWP triply periodic minimal surface, Mech. Adv. Mater. Struct., vol. 27, no. 10, pp. 775–788, 2020. DOI: 10.1080/15376494.2018.1538470.
  • H. Karcher, K. Polthier, J. Klinowski, and A.L. Mackay, Construction of triply periodic minimal surfaces, Philos. Trans. Roy. Soc. Lond. A Math. Phys. Eng. Sci., vol. 354, no. 1715, pp. 2077–2104, 1996.
  • A.L. Mackay, Periodic minimal surfaces, Physica B C., vol. 131, no. 1-3, pp. 300–305, 1985. DOI: 10.1016/0378-4363(85)90163-9.
  • H.G. von Schnering, and R. Nesper, Nodal surfaces of Fourier series: fundamental invariants of structured matter, Z. Physik B - Condensed Matter., vol. 83, no. 3, pp. 407–412, 1991. DOI: 10.1007/BF01313411.
  • D. Sharma, and S.S. Hiremath, Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: performance, challenges, and application, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5077–5107, 2022. DOI: 10.1080/15376494.2021.1948151.
  • S. Higuera, R. Miralbes, and D. Ranz, Mechanical properties and energy–absorption capabilities of thermoplastic sheet gyroid structures, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4110–4124, 2022. DOI: 10.1080/15376494.2021.1919803.
  • D. Li, W. Liao, N. Dai, and Y.M. Xie, Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities, Materials, vol. 12, no. 13, pp. 2183, 2019. DOI: 10.3390/ma12132183.
  • R. Ambu, and A.E. Morabito, Porous Scaffold design based on minimal surfaces: development and assessment of variable architectures, Symmetry, vol. 10, no. 9, pp. 361, 2018. DOI: 10.3390/sym10090361.
  • M. Zhao, D.Z. Zhang, F. Liu, Z. Li, Z. Ma, and Z. Ren, Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces, Int. J. Mech. Sci., vol. 167, pp. 105262, 2020. DOI: 10.1016/j.ijmecsci.2019.105262.
  • R. Hedayati, S.M. Ahmadi, K. Lietaert, B. Pouran, Y. Li, H. Weinans, C.D. Rans, and A.A. Zadpoor, Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials, J. Mech. Behav. Biomed. Mater., vol. 79, pp. 254–263, 2018. DOI: 10.1016/j.jmbbm.2017.12.029.
  • L.J. Gibson, and M.F. Ashby, Cellular Solids: structure and Properties. 2nd ed. In Cambridge Solid State Science Series. Cambridge: cambridge University Press, 1997.
  • R. Miralbes, J. Cuartero, D. Ranz, and N. Correia, Numerical simulations of gyroid structures under compressive loads, Mech. Adv. Mater. Struct., vol. 0, no. 0, pp. 1–10, 2023. DOI: 10.1080/15376494.2023.2192712.
  • K. Refai, M. Montemurro, C. Brugger, and N. Saintier, Determination of the effective elastic properties of titanium lattice structures, Mech. Adv. Mater. Struct., vol. 27, no. 23, pp. 1966–1982, 2020. DOI: 10.1080/15376494.2018.1536816.
  • D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures, Mater. Design., vol. 122, pp. 255–267, 2017. DOI: 10.1016/j.matdes.2017.03.018.
  • D.W. Abueidda, M. Elhebeary, C.-S. (Pang, S. Abu Al-Rub, R.K. Jasiuk, and I.M. Andrew) Shiang, Mechanical properties of 3D printed polymeric Gyroid cellular structures: experimental and finite element study, Mater. Design., vol. 165, pp. 107597, 2019. DOI: 10.1016/j.matdes.2019.107597.
  • F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, and A.A. Zadpoor, Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties, Acta Biomater., vol. 53, pp. 572–584, 2017. DOI: 10.1016/j.actbio.2017.02.024.
  • D.W. Abueidda, R.K. Abu Al-Rub, A.S. Dalaq, D.-W. Lee, K.A. Khan, and I. Jasiuk, Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces, Mech. Mater., vol. 95, pp. 102–115, 2016. DOI: 10.1016/j.mechmat.2016.01.004.
  • D.-W. Lee, K.A. Khan, and R.K. Abu Al-Rub, Stiffness and yield strength of architectured foams based on the Schwarz Primitive triply periodic minimal surface, Int. J. Plast., vol. 95, pp. 1–20, Aug. 2017. DOI: 10.1016/j.ijplas.2017.03.005.
  • H. Jia, H. Lei, P. Wang, J. Meng, C. Li, H. Zhou, X. Zhang, and D. Fang, An experimental and numerical investigation of compressive response of designed Schwarz Primitive triply periodic minimal surface with non-uniform shell thickness, Extreme Mech. Lett., vol. 37, pp. 100671, 2020. DOI: 10.1016/j.eml.2020.100671.
  • O. Al-Ketan, R. Rowshan, and R.K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf., vol. 19, pp. 167–183, 2018. DOI: 10.1016/j.addma.2017.12.006.
  • O. Al-Ketan, R. Rezgui, R. Rowshan, H. Du, N.X. Fang, and R.K.A. Al‐Rub, Microarchitected stretching-dominated mechanical metamaterials with minimal surface topologies, Adv Eng Mater., vol. 20, no. 9, pp. 1800029, 2018. DOI: 10.1002/adem.201800029.
  • R. Miralbes, D. Ranz, F.J. Pascual, D. Zouzias, and M. Maza, Characterization of additively manufactured triply periodic minimal surface structures under compressive loading, Mech. Adv. Mater. Struct., vol. 29, no. 13, pp. 1841–1855, 2022. DOI: 10.1080/15376494.2020.1842948.
  • X. Wang, T. Gao, C. Shi, Y. Zhou, Z. Li, and Z. Wang, Effect of geometric configuration on compression behavior of 3D-printed polymeric triply periodic minimal surface sheets, Mech. Adv. Mater. Struct., vol. 30, no. 11, pp. 2304–2314, 2023. DOI: 10.1080/15376494.2022.2053906.
  • R. Miralbes, S. Higuera, D. Ranz, and J.A. Gomez, Comparative analysis of mechanical properties and energy absorption capabilities of functionally graded and non-graded thermoplastic sheet gyroid structures, Mech. Adv. Mater. Struct., vol. 29, no. 26, pp. 5142–5155, 2022. DOI: 10.1080/15376494.2021.1949509.
  • H.A. Schwarz, Gesammelte Mathematische Abhandlungen. American Mathematical Society, Providence, RI, 1972. ISBN 0828402604, 9780828402606.
  • A.H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections. National Aeronautics and Space Administration, Washington, DC, 1970. NASA Technical Report # D5541.
  • E.A. Ramírez, N. Béraud, F. Pourroy, F. Villeneuve, and M. Museau, Design parameters effects on relative density of triply periodic minimal surfaces for additive manufacturing, Procedia CIRP., vol. 100, pp. 13–18, 2021. DOI: 10.1016/j.procir.2021.05.002.
  • M. Montemurro, A. Catapano, and D. Doroszewski, A multi-scale approach for the simultaneous shape and material optimisation of sandwich panels with cellular core, Compos. Part B: Eng., vol. 91, pp. 458–472, 2016. DOI: 10.1016/j.compositesb.2016.01.030.
  • E.A. Ramírez, N. Béraud, F. Pourroy, F. Villeneuve, and M. Museau, A Design Methodology for Graded Density Triply Periodic Minimal Surfaces. in Advances on Mechanics, Design Engineering and Manufacturing IV, S. Gerbino, A. Lanzotti, M. Martorelli, R. Mirálbes Buil, C. Rizzi, and L. Roucoules, Eds., in Lecture Notes in Mechanical Engineering. Cham: springer International Publishing, 2023. pp. 955–966.
  • A. Doi, and A. Koide, An efficient method of triangulating equi-valued surfaces by using tetrahedral cells, IEICE Trans. Inf. Syst., vol. E74-D, no. 1, pp. 214–224, 1991.
  • A.H. Azman, ‘Method for integration of lattice structures in design for additive manufacturing’, PhD thesis, Université Grenoble Alpes, 2017. Accessed: Sep 2, 2020 [Online]. Available: https://tel.archives-ouvertes.fr/tel-01688758.
  • M.F. Ashby, The properties of foams and lattices, Philos. Trans. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 15–30, 2006. DOI: 10.1098/rsta.2005.1678.
  • V.S. Deshpande, M.F. Ashby, and N.A. Fleck, Foam topology: bending versus stretching dominated architectures, Acta Mater., vol. 49, no. 6, pp. 1035–1040, 2001. DOI: 10.1016/S1359-6454(00)00379-7.
  • E.J. Barbero, Finite Element Analysis of Composite Materials Using Abaqus (R) , 2nd edn. CRC Press, Boca Raton, FL, 2023. ISBN 9781003108153.
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. angew. Math. Mech., vol. 9, no. 1, pp. 49–58, 1929. DOI: 10.1002/zamm.19290090104.
  • W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Ann. Phys., vol. 274, no. 12, pp. 573–587, 1889. DOI: 10.1002/andp.18892741206.
  • R.W. Zimmerman, Hashin-Shtrikman bounds on the poisson ratio of a composite material, Mech. Res. Commun., vol. 19, no. 6, pp. 563–569, 1992. DOI: 10.1016/0093-6413(92)90085-O.
  • L. Xu, Y. Zhang, D. Zhang, D. Liu, and Z. Qian, Numerical computation of effective stiffness for spatially graded beam-like structures based on asymptotic homogenization, Mech. Adv. Mater. Struct., vol. 0, no. 0, pp. 1–18, 2023. DOI: 10.1080/15376494.2023.2190738.
  • Inc, ANSYS, ‘Ansys® Element Reference Manual, Release 10.0, [Chapter 4. Element Library, SHELL63], ANSYS, Inc.’, 2004.
  • E. Panettieri, E. Boissin, M. Montemurro, A. Catapano, and D. Jalocha, On the accuracy of a homogenized continuum model of lattice structures in modal analyses, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6768–6785, 2022. DOI: 10.1080/15376494.2021.1985196.
  • I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, and R.J.M. Hague, Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer., vol. 152, pp. 62–71, 2018. DOI: 10.1016/j.polymer.2017.11.049.
  • I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, and I.A. Ashcroft, Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading, Mater. Design., vol. 155, pp. 220–232, 2018. DOI: 10.1016/j.matdes.2018.05.058.
  • H. Yin, Z. Liu, J. Dai, G. Wen, and C. Zhang, Crushing behavior and optimization of sheet-based 3D periodic cellular structures, Compos. Part B: Eng., vol. 182, pp. 107565. DOI: 10.1016/j.compositesb.2019.107565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.