134
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Orthotropic damage model for composite structures using the 3D Tsai-Wu failure criterion

Received 05 Oct 2023, Accepted 27 Oct 2023, Published online: 17 Nov 2023

References

  • M. El Kadi, D. Van Hemelrijck, and T. Tysmans, Improving the anchorage in textile reinforced cement composites by 3D spacer connections: experimental study of flexural and cracking behaviors, J. Compos. Sci., vol. 6, no. 12, pp. 357, 2022. DOI: 10.3390/jcs6120357.
  • B. Li, Y. Gong, H. Xiao, Y. Gao, and E. Liang, A two-dimensional model for pin-load distribution and failure analysis of composite bolted joints, Materials., vol. 14, no. 13, pp. 3646, 2021. DOI: 10.3390/ma14133646.
  • D. Martins, M. Proença, J.R. Correia, J. Gonilha, M. Arruda, and N. Silvestre, Development of a novel beam-to-column connection system for pultruded GFRP tubular profiles, Compos. Struct., vol. 171, pp. 263–276, 2017. DOI: 10.1016/j.compstruct.2017.03.049.
  • H. Hu, Q. Wei, B. Liu, Y. Liu, N. Hu, Q. Ma, and C. Wang, Progressive damage behaviour analysis and comparison with 2D/3D Hashin Failure Models on carbon fibre-reinforced aluminium laminates, Polymers (Basel)., vol. 14, no. 14, pp. 2946, 2022. DOI: 10.3390/polym14142946.
  • S.Y. Kong, L.S. Wong, S.C. Paul, and M.J. Miah, Shear response of Glass Fibre Reinforced Polymer (GFRP) built-up hollow and lightweight concrete filled beams: an experimental and numerical study, Polymers (Basel)., vol. 12, no. 10, pp. 2270, 2020. DOI: 10.3390/polym12102270.
  • A.M. Girão Coelho, J. Toby Mottram, and K.A. Harries, Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies, Compos. Struct., vol. 126, pp. 299–313, 2015. DOI: 10.1016/j.compstruct.2015.02.071.
  • J.R. Correia, D. Martins, J. Gonilha, M. Arruda, C. Andre, J. Nascimento, and F. Branco, Clickhouse project an all composite emergency housing system. In: CACM Conference on Advances in Composite Materials and Structures, Instambul, 2015.
  • I. Carol, E. Rizzi, and K. William, An extended volumetric/deviatoric formulation of anisotropic damage based on pseudo-log rate, Eur. J. Mech. A/Solids., vol. 21, no. 5, pp. 747–772, 2002. DOI: 10.1016/S0997-7538(02)01232-9.
  • A. Arteiro, G. Catalanotti, J. Reinoso, P. Linde, and P.P. Camanho, Simulation of the mechanical response of thin-ply composites: from computational micro-mechanics to structural analysis, Arch. Computat. Methods Eng., vol. 26, no. 5, pp. 1445–1487, 2019. DOI: 10.1007/s11831-018-9291-2.
  • U. Chowdhury, and X.-F. Wu, Cohesive zone modeling of the elastoplastic and failure behavior of polymer nanoclay composites, J. Compos. Sci., vol. 5, no. 5, pp. 131, 2021. DOI: 10.3390/jcs5050131.
  • J.J. Granados, X. Martinez, N. Nash, C. Bachour, I. Manolakis, A. Comer, and D.D. Capua, Numerical and experimental procedure for material calibration using the serial/parallel mixing theory, to analyze different composite failure modes, Mech. Adv. Mater. Struct., vol. 28, no. 14, pp. 1415–1433, 2021. DOI: 10.1080/15376494.2019.1675106.
  • A. Matzenmiller, J. Lubliner, and R.L. Taylor, A constitutive model for anisotropic damage in fiber-composites, Mech. Mater., vol. 20, no. 2, pp. 125–152, 1995. DOI: 10.1016/0167-6636(94)00053-0.
  • B. Lopes, M.R.T. Arruda, L. Almeida-Fernandes, L. Castro, N. Silvestre, and J.R. Correia, Assessment of mesh dependency in the numerical simulation of compact tension tests for orthotropic materials, Composites C. Open Access., vol. 1, pp. 100006, 2020. DOI: 10.1016/j.jcomc.2020.100006.
  • M.R.T. Arruda, M. Trombini, and A. Pagani, Implicit to explicit algorithm for ABAQUS standard user-subroutine UMAT for a 3D Hashin-based orthotropic damage model, Appl. Sci., vol. 13, no. 2, pp. 1155, 2023. DOI: 10.3390/app13021155.
  • ABAQUS, Abaqus Unified FEA-3DEXPERIENCE R2018, 3DS-SIMULIA, Dassault Systèmes, Rhode Island, 2018.
  • ANSYS, ANSYS Structural Mechancis, ANSYS Inc., Canonsburg, PA, 2015.
  • I. Lapczyk, and J.A. Hurtado, Progressive damage modeling in fiber-reinforced materials, Compos. A Appl. Sci. Manuf., vol. 38, no. 11, pp. 2333–2341, 2007. DOI: 10.1016/j.compositesa.2007.01.017.
  • I.-K. Kang, and S.-H. Kim, Compressive strength testing of hybrid concrete-filled fiber-reinforced plastic tubes confined by filament winding, Appl. Sci., vol. 11, no. 7, pp. 2900, 2021. DOI: 10.3390/app11072900.
  • M.R.T. Arruda, L.M.S. Castro, A.J.M. Ferreira, D. Martins, and J.R. Correia, Physically non-linear analysis of beam models using Carrera Unified Formulation, Compos. Struct., vol. 195, pp. 60–73, 2018. DOI: 10.1016/j.compstruct.2018.03.107.
  • Z. Chen, G. Fang, J. Xie, and J. Liang, Mechanism-based strength criterion for 3D needled C/C–SiC composites under in-plane biaxial compression, Mech. Adv. Mater. Struct., vol. 26, no. 22, pp. 1841–1848, 2019. DOI: 10.1080/15376494.2018.1452316.
  • M.N. Nahas, Survey of failure and post-failure theories of laminated fiber-reinforced composites, J. Compos. Technol. Res., vol. 8, no. 4, pp. 138–153, 1986. DOI: 10.1520/CTR10335J.
  • A. Kaddour, and M. Hinton, Maturity of 3D failure criteria for fibre-reinforced composites: comparison between theories and experiments: part B of WWFE-II, J. Compos. Mater., vol. 47, no. 6-7, pp. 925–966, 2013. DOI: 10.1177/0021998313478710.
  • Z. Hashin, Fatigue failure criteria for unidirectional fiber composites, Trans. ASME, J. Appl. Mech., vol. 48, no. 4, pp. 846–852, 1981. DOI: 10.1115/1.3157744.
  • P.P. Camanho, and F.L. Matthews, A progressive damage model for mechanically fastened joints in composite laminates, J. Compos. Mater., vol. 33, no. 24, pp. 2248–2280, 1999. DOI: 10.1177/002199839903302402.
  • C. Hühne, A.K. Zerbst, G. Kuhlmann, C. Steenbock, and R. Rolfes, Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models, Compos. Struct., vol. 92, no. 2, pp. 189–200, 2010. DOI: 10.1016/j.compstruct.2009.05.011.
  • X. Cheng, S. Wang, J. Zhang, W. Huang, Y. Cheng, and J. Zhang, Effect of damage on failure mode of multi-bolt composite joints using failure envelope method, Compos. Struct., vol. 160, pp. 8–15, 2017. DOI: 10.1016/j.compstruct.2016.10.042.
  • M. Naderi, and M.M. Khonsari, Stochastic analysis of inter- and intra-laminar damage in notched PEEK laminates, Express Polym. Lett., vol. 7, no. 4, pp. 383–395, 2013. DOI: 10.3144/expresspolymlett.2013.35.
  • P. Linde, J. Pleitner, H. Boer, and C. Carmone, Modelling and simulation of fibre metal laminates. 2004 ABAQUS Users’ Conference, Simulia, Boston, MA, 2004.
  • Y. Liu, B. Zwingmann, and M. Schlaich, Nonlinear progressive damage analysis of notched or bolted Fibre-Reinforced Polymer (FRP) laminates based on a three-dimensional strain failure criterion, Polymers., vol. 6, no. 4, pp. 949–976, 2014. DOI: 10.3390/polym6040949.
  • Y. Wang, M. Tong, and S. Zhu, Three dimensional continuum damage mechanics model of progressive failure analysis in fibre-reinforced composite laminates, In Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, 2009. DOI: 10.2514/6.2009-2629.
  • R. Gutkin, and S.T. Pinho, Practical application of failure models to predict the response of composite structures, 18th International Conference on Composite Materials, Lisbon-Portugal, 2009.
  • X. Chen, X. Sun, B. Wang, J. Gu, P. Zou, Y. Chai, and J. Yang, An improved longitudinal failure criterion for UD composites based on kinking model, Mech. Adv. Mater. Struct., vol. 29, no. 6, pp. 905–915, 2022. DOI: 10.1080/15376494.2020.1799269.
  • K.C. Warren, R.A. Lopez-Anido, S.S. Vel, and H.H. Bayraktar, Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing, Compos. B Eng., vol. 84, pp. 266–276, 2016. DOI: 10.1016/j.compositesb.2015.08.082.
  • Á. Olmedo, and C. Santiuste, On the prediction of bolted single-lap composite joints, Compos. Struct., vol. 94, no. 6, pp. 2110–2117, 2012. DOI: 10.1016/j.compstruct.2012.01.016.
  • B. Mandal, and A. Chakrabarti, Simulating progressive damage of notched composite laminates with various lamination schemes, Int. J. Appl. Mech. Eng., vol. 22, no. 2, pp. 333–347, 2017. DOI: 10.1515/ijame-2017-0020.
  • G.-D. Wang, and S.K. Melly, Three-dimensional finite element modeling of drilling CFRP composites using Abaqus/CAE: a review, Int J Adv Manuf Technol., vol. 94, no. 1–4, pp. 599–614, 2018. DOI: 10.1007/s00170-017-0754-7.
  • H. Liu, J. Liu, Y. Ding, J. Zhou, X. Kong, L.T. Harper, B.R.K. Blackman, B.G. Falzon, and J.P. Dear, Modelling damage in fibre-reinforced thermoplastic composite laminates subjected to three-point bend loading, Compos. Struct., vol. 236, pp. 111889, 2020. DOI: 10.1016/j.compstruct.2020.111889.
  • P.P. Camanho, A. Arteiro, A.R. Melro, G. Catalanotti, and M. Vogler, Three-dimensional invariant-based failure criteria for fibre-reinforced composites, Int. J. Solids Struct., vol. 55, pp. 92–107, 2015. DOI: 10.1016/j.ijsolstr.2014.03.038.
  • F. Zhuang, A. Arteiro, C. Furtado, P. Chen, and P.P. Camanho, Mesoscale modelling of damage in single- and double-shear composite bolted joints, Compos. Struct., vol. 226, pp. 111210, 2019. DOI: 10.1016/j.compstruct.2019.111210.
  • P. Zhan, X. Qin, Q. Zhang, and Y. Sun, Damage identification in beam-like structure using strain FRF-based damage index and artificial neural network, Mech. Adv. Mater. Struct., vol. 30, no. 12, pp. 2458–2476, 2023. DOI: 10.1080/15376494.2022.2055241.
  • E.J. Barbero, Finite Element Analysis of Composite Materials Using ABAQUS, CRC Press, London, 2013.
  • M.R.T. Arruda, L. Almeida-Fernandes, L. Castro, and J.R. Correia, Tsai–Wu based orthotropic damage model, Compos. C Open Access., vol. 4, pp. 100122, 2021. DOI: 10.1016/j.jcomc.2021.100122.
  • R.S. Dhari, N.P. Patel, H. Wang, and P.J. Hazell, Progressive damage modeling and optimization of fibrous composites under ballistic impact loading, Mech. Adv. Mater. Struct., vol. 28, no. 12, pp. 1227–1244, 2021. DOI: 10.1080/15376494.2019.1655688.
  • A.R. Melro, Analytical and Numerical Modelling of Damage and Fracture of Advanced Composites, FEUP, Portugal, 2011.
  • J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, Berlin, 1992.
  • J. Lemaitre, A. Benallal, R. Billardon, and D. Marquis, Thermodynamics and phenomenology. In: Continuum Thermomechanics - The Art and Science of Modelling Material Behaviour. Solid Mechanics and Its Applications, Vol. 76, Springer Netherlands, Netherlands, pp. 209–223, 2002.
  • S.P.B. Proença, Introdução à mecânica do dano e fracturamento, Notas de aulas. Escola de Engenharia de São Carlos, Universidade de São Carlos, São Paulo, 2000.
  • H. Ziegler, An Introduction to Thermomechanics, North-Holland, Amsterdam, 1977.
  • Q.S. Nguyen, Uniqueness, stability and bifurcation of standard systems. In: Current Trends and Results in Plasticity, Elsevier, London, 1985.
  • C. Wang, A. Roy, V.V. Silberschmidt, and Z. Chen, Modelling of damage evolution in braided composites: recent developments, Mech. Adv. Mater. Mod. Process., vol. 3, no. 1, pp. 15, 2017. DOI: 10.1186/s40759-017-0030-4(2017).
  • Z. Hashin, Failure criteria for unidirectional fiber composites, Trans. ASME, J. Appl. Mech., vol. 47, no. 2, pp. 329–334, 1980. DOI: 10.1115/1.3153664.
  • Z. Hashin, and A. Rotem, A fatigue failure criterion for fiber reinforced materials, J. Compos. Mater., vol. 7, no. 4, pp. 448–464, 1973. DOI: 10.1177/002199837300700404.
  • E.J. Barbero, and F.A. Cosso, Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates, Compos. B. Eng., vol. 56, pp. 638–646, 2014. DOI: 10.1016/j.compositesb.2013.08.084.
  • E.J. Barbero, F.A. Cosso, R. Roman, and T.L. Weadon, Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates, Compos. B. Eng., vol. 46, no. Supplement C, pp. 211–220, 2013. DOI: 10.1016/j.compositesb.2012.09.069.
  • S.S. Rahimian Koloor, A. Karimzadeh, N. Yidris, M. Petrů, M.R. Ayatollahi, and M.N. Tamin, An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model, Polymers (Basel)., vol. 12, no. 1, pp. 157, 2020. DOI: 10.3390/polym12010157.
  • J. Lemaitre, and R. Desmorat, Engineering Damage Mechanics, Springer, Berlin Heidelberg, 2005.
  • S.W. Tsai, and E.M. Wu, A general theory of strength for anisotropic materials, J. Compos. Mater., vol. 5, no. 1, pp. 58–80, 1971. DOI: 10.1177/002199837100500106.
  • S. Li, E. Sitnikova, Y. Liang, and A.-S. Kaddour, The Tsai-Wu failure criterion rationalised in the context of UD composites, Compos. A Appl. Sci. Manuf., vol. 102, pp. 207–217, 2017. DOI: 10.1016/j.compositesa.2017.08.007.
  • S.W. Tsai, A survey of macroscopic failure criteria for composite materials, J. Reinf. Plast. Compos., vol. 3, no. 1, pp. 40–62, 1984. DOI: 10.1177/073168448400300102.
  • S.W. Tsai, and H.T. Hahn, Introduction to Composite Materials, Westport, CT, Technomic Pub, 1980.
  • Z.P. Bazant, and B.H. Oh, Crack band theory for fracture of concrete, Mat. Struct., vol. 16, no. 3, pp. 155–177, 1983. DOI: 10.1007/BF02486267.
  • J. Oliver, A consistent characteristic length for smeared cracking models, Numerical Meth Eng., vol. 28, no. 2, pp. 461–474, 1989. DOI: 10.1002/nme.1620280214.
  • J.A. Forero, M. Bravo, J. Pacheco, J. de Brito, and L. Evangelista, Fracture behaviour of concrete with reactive magnesium oxide as alternative binder, Appl. Sci., vol. 11, no. 7, pp. 2891, 2021. DOI: 10.3390/app11072891.
  • A.R. Srinivasa, J.N. Reddy, and N. Phan, A discrete nonlocal damage mechanics approach, Mech. Adv. Mater. Struct., vol. 29, no. 13, pp. 1813–1820, 2022. DOI: 10.1080/15376494.2020.1839984.
  • R. Borst, M.A. Crisfield, J.J.C. Remmers, and C.V. Verhoosel, Nonlinear Finite Element Analysis of Solids and Structures, Wiley, Chichester, 2012.
  • G. Duvaut, and J.L. Lions, Les Inequations en Mecanique et en Physique, Dunod, Paris, 1972.
  • M.G.D. Geers, W.A.M. Brekelmans, and R. de Borst, Viscous Regularization of Strain-Localisation for Damaging Materials, Springer Netherlands, Dordrecht, 1994.
  • F. Dunne, and N. Petrinic, Introduction to Computational Plasticity, Oxford University Press, New York, 2005.
  • J.L. Chaboche, F. Feyel, and Y. Monerie, Interface debonding models; a viscous regularization with a limited rate dependency, Int. J. Solids Struct., vol. 38, no. 18, pp. 3127–3160, 2001. DOI: 10.1016/S0020-7683(00)00053-6.
  • D. Martins, J. Gonilha, J.R. Correia, and N. Silvestre, Exterior beam-to-column bolted connections between GFRP I-shaped pultruded profiles using stainless steel cleats. Part 1: experimental study, Thin. Walled Struct., vol. 163, pp. 107719, 2021. DOI: 10.1016/j.tws.2021.107719.
  • L. Almeida-Fernandes, N. Silvestre, J.R. Correia, and M.R.T. Arruda, Fracture toughness-based models for damage simulation of pultruded GFRP materials, Compos. B. Eng., vol. 186, pp. 107818, 2020. DOI: 10.1016/j.compositesb.2020.107818.
  • L. Almeida-Fernandes, N. Silvestre, J.R. Correia, and M. Arruda, Compressive transverse fracture behaviour of pultruded GFRP materials: experimental study and numerical calibration, Compos. Struct., vol. 247, pp. 112453, 2020. DOI: 10.1016/j.compstruct.2020.112453.
  • G.G. Chell, and P.J. Worthington, The determination of fracture toughness of a tough steel from invalid compact tension specimens of varying width and thickness, Mater. Sci. Eng., vol. 26, no. 1, pp. 95–103, 1976. DOI: 10.1016/0025-5416(76)90231-7.
  • Z. Xiong, C. Zhao, Y. Meng, and W. Li, A damage model based on Tsai–Wu criterion and size effect investigation of pultruded GFRP, Mech. Adv. Mater. Struct., vol. 29, pp. 1–15, 2022. DOI: 10.1080/15376494.2022.2116754.
  • CNR-DT-205/2007, Guide for the design and construction of structures made of FRP pultruded elements, Advisory Committee on Technical Recommendations for Construction, Rome, Italy, 2008.
  • D. Martinavičius, M. Augonis, and M. Rui Tiago Arruda, Experimental and analytical study on local buckling behavior of the concrete-filled thin-walled welded steel columns, Periodica Polytechnica Civil Eng., vol. 64, no. 3, pp. 917–927, 2020. DOI: 10.3311/PPci.15705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.