186
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Strength and damage analysis of composite tube with metal lining

, , , , &
Received 29 May 2023, Accepted 29 Oct 2023, Published online: 09 Nov 2023

References

  • J. H. Almeida, M. L. Ribeiro, V. Tita, and S. C. Amico, Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression, Compos. Struct., vol. 160, pp. 204–210, 2017. DOI: 10.1016/j.compstruct.2016.10.036.
  • J. Xiao, H. Shi, L. Tao, L. Qi, W. Min, H. Zhang, M. Yu, Z. Sun, Effect of fibres on the failure mechanism of composite tubes under low-velocity impact, Materials., vol. 13, no. 18, pp. 4143, 2020. DOI: 10.3390/ma13184143.
  • F.G. Alabtah, E. Mahdi, and F.F. Eliyan, The use of fiber reinforced polymeric composites in pipelines: a review, Compos. Struct., vol. 276, pp. 114595, 2021. DOI: 10.1016/j.compstruct.2021.114595.
  • J.G. Teng, T. Yu, and D. Fernando, Strengthening of steel structures with fiber-reinforced polymer composites, J. Constr. Steel Res., vol. 78, pp. 131–143, 2012. DOI: 10.1016/j.jcsr.2012.06.011.
  • H. Han, F. Taheri, and N. Pegg, Crushing behaviors and energy absorption efficiency of hybrid pultruded and ±45° braided tubes, Mech. Adv. Mater. Struct., vol. 18, no. 4, pp. 287–300, 2011. DOI: 10.1080/15376494.2010.506103.
  • Y. Zha, Q. Ma, X. Gan, M. Cai, and T. Zhou, Deformation and energy absorption characters of Al‐CFRP hybrid tubes under quasi‐static radial compression, Polym. Compos., vol. 41, no. 11, pp. 4602–4618, 2020. DOI: 10.1002/pc.25737.
  • B. Yang, Y. Chen, K. Fu, and G. Wei, Simulating progressive damage behaviors of carbon fiber reinforced composite tubes triggered by various initiators under axial crushing, Mech. Adv. Mater. Struct., pp. 1–9, 2023. DOI: 10.1080/15376494.2023.2212269.
  • H. Luo, Y. Yan, and T. Zhang, Gradually failure simulation and energy absorption characteristics of GFRP composite tubes subjected to axial dynamic impact, Polym. Compos., vol. 40, no. 4, pp. 1545–1555, 2019. DOI: 10.1002/pc.24896.
  • Y. Guo, M. Gil Pérez, G. Serhat, and J. Knippers, A design methodology for fiber layup optimization of filament wound structural components, Structures., vol. 38, pp. 1125–1136, 2022. DOI: 10.1016/j.istruc.2022.02.048.
  • Y. Xue, L. Xun, Z. Li, B. Gu, and B. Sun, Microstructural modeling of temperature distribution and heat transfer of 3-D carbon fiber braided circular composite tubes under direct current, Aerosp. Sci. Technol., vol. 139, pp. 108376, 2023. DOI: 10.1016/j.ast.2023.108376.
  • L. Xun, S. Huang, B. Sun, and B. Gu, Torsional cracks development in carbon-fiber 3-D braided composite tubes, Thin. Walled Struct., vol. 184, pp. 110477, 2023. DOI: 10.1016/j.tws.2022.110477.
  • X. Wu, B. Sun, B. Wang, and X. Shi, X-ray microtomography analysis of the damage mechanisms in 3D circular braided carbon fiber/epoxy resin composite tubes under axial impact compression, Compos. Commun., vol. 41, pp. 101650, 2023. DOI: 10.1016/j.coco.2023.101650.
  • Y. Shen, Z. Wu, and X. Hu, Inward eccentric fold failure in the progressive crushing of aluminum-CFRP square hybrid tubes, Mech. Adv. Mater. Struct., vol. 30, no. 4, pp. 738–750, 2023. DOI: 10.1080/15376494.2021.2023917.
  • S. Anand, J.-E. Chambe, C. Bouvet, and S. Rivallant, Stacking sequence optimization of composite tubes submitted to crushing using the discrete ply model (DPM), Mech. Adv. Mater. Struct., 2022.
  • J. Liu, Y. Xian, D. Cao, J. Su, W. Liao, M. Ding, and Z. Su, Study of the design and torsion performance for carbon fiber composite material automobile drive shaft, Proceedings of SAE-China Congress 2016: Selected Papers, pp. 303–312, Singapore, 2017.
  • D.-M. Yin, B.-M. Li, and H.-C. Xiao, Analysis for the residual prestress of composite barrel for railgun with tension winding, Defence Technol., vol. 16, no. 4, pp. 893–899, 2020. DOI: 10.1016/j.dt.2019.11.008.
  • A.F. Hamed, Y.A. Khalid, S.M. Sapuan, M.M. Hamdan, T.S. Younis, and B.B. Sahari, Effects of winding angles on the strength of filament wound composite tubes subjected to different loading modes, Polym. Polym. Compos., vol. 15, no. 3, pp. 199–206, 2007. DOI: 10.1177/096739110701500304.
  • S. Alimirzaei, M. Ahmadi Najafabadi, A. Nikbakht, and L. Pahlavan, Investigation of energy absorption capacity of 3D filament wound composite tubes: experimental evaluation, numerical simulation, and acoustic emission monitoring, Mech. Adv. Mater. Struct., pp. 1–16, 2023. DOI: 10.1080/15376494.2022.2163437.
  • M. Emadi, H. Beheshti, and M. Heidari-Rarani, Thickness effect study on the crushing characteristics of aluminum and composite tubes: numerical analysis and multi-objective optimization, Mech. Adv. Mater. Struct., vol. 28, no. 24, pp. 2585–2594, 2021. DOI: 10.1080/15376494.2020.1747667.
  • M. Koloushani, M.R. Forouzan, and M.R. Niroomand, On the crashworthiness performance of thin-walled circular tubes: effect of diameter and thickness, Mech. Adv. Mater. Struct., pp. 1–13, 2023. DOI: 10.1080/15376494.2023.2206839.
  • M. Oloumi Doudaran, H. Ahmadi, G. Liaghat, and M. Seidi, Experimental and numerical investigation on crashworthiness of composite reinforced auxetic cellular tubes, Mech. Adv. Mater. Struct., pp. 1–23, 2023. DOI: 10.1080/15376494.2023.2248115.
  • R. Guélou, F. Eyma, A. Cantarel, S. Rivallant, and B. Castanié, Dynamic crushing of wood-based sandwich composite tubes, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 7004–7024, 2022. DOI: 10.1080/15376494.2021.1991533.
  • L.A.L. Martins, F.L. Bastian, and T.A. Netto, Reviewing some design issues for filament wound composite tubes, Mater. Des., vol. 55, pp. 242–249, 2014. DOI: 10.1016/j.matdes.2013.09.059.
  • H. Takuda, Prediction of forming limit of high-strength steel sheets by means of criterion for ductile fracture, KEM., vol. 251–252, pp. 1–6, 2003. DOI: 10.4028/www.scientific.net/KEM.251-252.1.
  • J. Kim, S.-J. K, and B.-S. Kang, A prediction of bursting failure in tube hydroforming processes based on ductile fracture criterion, Int. J. Adv. Manuf. Technol., vol. 22, no. 5–6, pp. 357–362, 2003. DOI: 10.1007/s00170-002-1489-6.
  • Y.K. Ko, J.S. Lee, H. Huh, H.K. Kim, and S.H. Park, Prediction of fracture in hub-hole expanding process using a new ductile fracture criterion, J. Mater. Process. Technol., vol. 187–188, pp. 358–362, 2007. DOI: 10.1016/j.jmatprotec.2006.11.071.
  • Q. Guo, W. Yao, W. Li, and N. Gupta, Constitutive models for the structural analysis of composite materials for the finite element analysis: a review of recent practices, Compos. Struct., vol. 260, pp. 113267, 2021. DOI: 10.1016/j.compstruct.2020.113267.
  • P. Maimí, P.P. Camanho, J.A. Mayugo, and C.G. Davila, A continuum damage model for composite laminates: part I – Constitutive model, Mech. Mater., vol. 39, no. 10, pp. 897–908, 2007. DOI: 10.1016/j.mechmat.2007.03.005.
  • F. Lauro, B. Bennani, P. Drazetic, J. Oudin, and X. Ni, Ductile damage and fracture finite element modelling of elasto-viscoplastic voided materials, Comput. Mater. Sci., vol. 7, no. 3, pp. 295–307, 1997. DOI: 10.1016/S0927-0256(96)00098-5.
  • K. Foroutan, E. Carrera, A. Pagani, and H. Ahmadi, Post-buckling and large-deflection analysis of a sandwich FG plate with FG porous core using Carrera’s Unified Formulation, Compos. Struct., vol. 272, pp. 114189, 2021. DOI: 10.1016/j.compstruct.2021.114189.
  • P.X. Shi Yang Zhao, New two-dimensional polynomial failure criteria for composite materials, Adv. Mater. Sci. Eng., vol. 2014, pp. 1–7, 2014.
  • J.-H. Kweon, S.-Y. Shin, and J.-H. Choi, A two-dimensional progressive failure analysis of pinned joints in unidirectional-fabric laminated composites, J. Compos. Mater., vol. 41, no. 17, pp. 2083–2104, 2007. DOI: 10.1177/0021998307074131.
  • P. Cheng, Y. Peng, S. Li, Y. Rao, A. L. Duigou, K. Wang, S. Ahzi, 3D printed continuous fiber reinforced composite lightweight structures: a review and outlook, Compos. B Eng., vol. 250, pp. 110450, 2023. DOI: 10.1016/j.compositesb.2022.110450.
  • Z. Zhang, S. Hou, Q. Liu, and X. Han, Winding orientation optimization design of composite tubes based on quasi-static and dynamic experiments, Thin. Walled Struct., vol. 127, pp. 425–433, 2018. DOI: 10.1016/j.tws.2017.11.052.
  • S. Natarajan, R. K. Annabattula, Hirshikesh, A FEniCS implementation of the phase field method for quasi-static brittle fracture. Front. Struct. Civ. Eng. vol. 13, no. 2, pp. 380–396, 2019. DOI: 10.1007/s11709-018-0471-9.
  • L. Chen, P.L. Wang, P.N. Song, and J.Y. Zhang, Finite element numerical simulation of temperature field in metal pattern casting system and “reverse method” of defining the thermal physical coefficient, Acta Metal Sin., vol. 20, no. 3, pp. 217–224, 2007. DOI: 10.1016/S1006-7191(07)60029-5.
  • S. Song, C. Xiong, J. Zheng, J. Yin, Y. Zou, and X. Zhu, Compression, bending, energy absorption properties, and failure modes of composite Kagome honeycomb sandwich structure reinforced by PMI foams, Compos. Struct., vol. 277, pp. 114611, 2021. DOI: 10.1016/j.compstruct.2021.114611.
  • S. Song, C. Xiong, J. Yin, and X. Kang, Fabrication and mechanical behavior of an all‐composite interlocked triangular honeycomb sandwich structure: experimental investigation and numerical analysis, Polym. Compos., vol. 44, no. 2, pp. 833–849, 2023. DOI: 10.1002/pc.27135.
  • M. Surgeon, E. Vanswijgenhoven, M. Wevers, and O. Van Der Biest, Transverse cracking and Poisson’s ratio reduction in cross-ply carbon fibre-reinforced polymers, J. Mater. Sci., vol. 34, no. 22, pp. 5513–5517, 1999. DOI: 10.1023/A:1004716612960.
  • J.H.S. Almeida, M.L. Tonatto, M.L. Ribeiroc, V. Tita, and S. Amico, Buckling and post-buckling of filament wound composite tubes under axial compression: liner, nonliner, damage and experiment and experimental analyses, Compos. B. Eng., vol. 149, pp. 227–239, 2018.
  • B. Li, C. Xiong, Y.-S. Zhang, and J.-X. Gao, Multi-objective optimization design of CFRP winding mortar barrel with metal liner based on MOPSO, KEM., vol. 753, pp. 109–113, 2017. DOI: 10.4028/www.scientific.net/KEM.753.109.
  • T. Jollivet, C. Peyrac, and F. Lefebvre, Damage of composite materials, Proc. Eng., vol. 66, pp. 746–758, 2013. DOI: 10.1016/j.proeng.2013.12.128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.