118
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Free vibration analysis of cracked composite plates reinforced with CNTs using extended finite element method (XFEM)

, , , , &
Received 10 Oct 2023, Accepted 01 Nov 2023, Published online: 22 Nov 2023

References

  • R. Gadallah, H. Murakawa, and M. Shibahara, Investigation of thickness and welding residual stress effects on fatigue crack growth, J. Constr. Steel Res., vol. 201, pp. 107760, 2023. DOI: 10.1016/j.jcsr.2022.107760.
  • F. Erdogan, and G.C. Sih, On the crack extension in plates under plane loading and transverse shear, J. Fluids Eng. Trans. ASME., vol. 85, no. 4, pp. 519–525, 1963. DOI: 10.1115/1.3656897.
  • J. S. Lindsay, The Thickness Effect and Plastic Flow in Cracked Plates, California Institute of Technology, Pasadena, CA, 1965.
  • J.R. Rice, and N. Levy, Part-through surface crack in an elastic plate, ASME Pap., vol. 39, no. 1, pp. 185–194, 1972. DOI: 10.1115/1.3422609.
  • T. Belytschko, and T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Eng., vol. 45, no. 5, pp. 601–620, 1999. 3,137. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  • N. MoëS, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng., vol. 46, no. 1, pp. 131–150, 1999. DOI: 10.1002/(SICI)1097-0207(19990910)46:1 < 131::AID-NME726 > 3.0.CO;2-J.
  • J.M. Melenk, and I. Babuška, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., vol. 139, no. 1–4, pp. 289–314, 1996. DOI: 10.1016/S0045-7825(96)01087-0.
  • J. Dolbow, N. Moës, and T. Belytschko, Modeling fracture in Mindlin-Reissner plates with the extended finite element method, Int. J. Solids Struct., vol. 37, no. 48–50, pp. 7161–7183, 2000. DOI: 10.1016/S0020-7683(00)00194-3.
  • R. Tiberkak, M. Bachene, B.K. Hachi, S. Rechak, and M. Haboussi, Dynamic response of cracked plate subjected to impact loading using the extended finite element method (X-FEM), Damage and Fracture Mechanics, Springer Netherlands, Berlin, Germany, pp. 297–306, 2009. DOI: 10.1007/978-90-481-2669-9_31.
  • M. Bachene, R. Tiberkak, S. Rechak, G. Maurice, and B.K. Hachi, Enriched finite element for modal analysis of cracked plates, Damage and Fracture Mechanics, Springer Netherlands, Berlin, Germany, pp. 463–471, 2009. DOI: 10.1007/978-90-481-2669-9_49.
  • M. Bachene, R. Tiberkak, and S. Rechak, Vibration analysis of cracked plates using the extended finite element method, Arch. Appl. Mech., vol. 79, no. 3, pp. 249–262, 2009. DOI: 10.1007/s00419-008-0224-7.
  • J. Jena, I.V. Singh, and V. Gaur, XFEM for semipermeable crack in piezoelectric material with maxwell stress, Eng. Fract. Mech., vol. 285, pp. 109281, 2023. DOI: 10.1016/j.engfracmech.2023.109281.
  • A. Patel, E. Sato, N. Shichijo, I. Hirata, and T. Takagi, A mixed XFEM and CZM approach for predicting progressive failure in advanced SiC/SiC CMC component, Compos. Part C Open Access., vol. 9, pp. 100325, 2022. DOI: 10.1016/j.jcomc.2022.100325.
  • A. Marzok, T. DeGanyar, and H. Waisman, Efficient XFEM approach for the analysis of thin-walled beams, Eng. Struct., vol. 285, pp. 116068, 2023. DOI: 10.1016/j.engstruct.2023.116068.
  • K. Khatri, and A. Lal, Stochastic XFEM fracture and crack propagation behavior of an isotropic plate with hole emanating radial cracks subjected to various in-plane loadings, Mech. Adv. Mater. Struct., vol. 25, no. 9, pp. 732–755, 2018. DOI: 10.1080/15376494.2017.1308599.
  • H.S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., vol. 91, no. 1, pp. 9–19, 2009. DOI: 10.1016/j.compstruct.2009.04.026.
  • H.S. Shen, and Y. Xiang, Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Comput. Methods Appl. Mech. Eng., vol. 213–216, pp. 196–205, 2012. DOI: 10.1016/j.cma.2011.11.025.
  • X. Miao, C. Li, and Y. Pan, Research on the dynamic characteristics of rotating metal–ceramic matrix DFG-CNTRC thin laminated shell with arbitrary boundary conditions, Thin-Walled Struct., vol. 179, pp. 109475, 2022. DOI: 10.1016/j.tws.2022.109475.
  • H.S. Shen, and Y. Xiang, Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., vol. 56, pp. 698–708, 2013. DOI: 10.1016/j.engstruct.2013.06.002.
  • X. Xu, C. Zhang, A. Khan, T.A. Sebaey, and M. Alkhedher, Free vibrations of rotating CNTRC beams in thermal environment, Case Stud. Therm. Eng., vol. 28, pp. 101355, 2021. DOI: 10.1016/j.csite.2021.101355.
  • L.W. Zhang, Z.X. Lei, and K.M. Liew, Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method, Appl. Math. Comput., vol. 256, pp. 488–504, 2015. DOI: 10.1016/j.amc.2015.01.066.
  • Y. Yu, and H.S. Shen, A comparison of nonlinear vibration and bending of hybrid CNTRC/metal laminated plates with positive and negative Poisson’s ratios, Int. J. Mech. Sci., vol. 183, pp. 105790, 2020. DOI: 10.1016/j.ijmecsci.2020.105790.
  • Y. Kiani, R. Dimitri, and F. Tornabene, Free vibration study of composite conical panels reinforced with FG-CNTs, Eng. Struct., vol. 172, pp. 472–482, 2018. DOI: 10.1016/j.engstruct.2018.06.006.
  • Z.X. Lei, K.M. Liew, and J.L. Yu, Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Compos. Struct., vol. 98, pp. 160–168, 2013. DOI: 10.1016/j.compstruct.2012.11.006.
  • R. Moradi-Dastjerdi, and F. Aghadavoudi, Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT, Compos. Struct., vol. 200, pp. 839–848, 2018. DOI: 10.1016/j.compstruct.2018.05.122.
  • P. Jiao, Z. Chen, H. Ma, D. Zhang, and P. Ge, Buckling analysis of thin rectangular FG-CNTRC plate subjected to arbitrarily distributed partial edge compression loads based on differential quadrature method, Thin-Walled Struct., vol. 145, pp. 106417, 2019. DOI: 10.1016/j.tws.2019.106417.
  • H. Shafiei, and A.R. Setoodeh, Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation, Steel Compos. Struct., vol. 24, no. 1, pp. 65–77, 2017. DOI: 10.12989/scs.2017.24.1.065.
  • T. Bensattalah, M. Zidour, T.H. Daouadji, and K. Bouakaz, Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix, Struct. Eng. Mech., vol. 70, no. 3, pp. 269–277, 2019. DOI: 10.12989/sem.2019.70.3.269.
  • M. Bouazza, and A.M. Zenkour, Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory, Arch. Appl. Mech., vol. 90, no. 8, pp. 1755–1769, 2020. DOI: 10.1007/s00419-020-01694-3.
  • Z.X. Lei, K.M. Liew, and J.L. Yu, Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment, Compos. Struct., vol. 106, pp. 128–138, 2013. DOI: 10.1016/j.compstruct.2013.06.003.
  • R. Bennai, H.A. Atmane, and A. Tounsi, A new higher-order shear and normal deformation theory for functionally graded sandwich beams, Steel. Compos. Struct., vol. 19, no. 3, pp. 521–546, 2015. DOI: 10.12989/scs.2015.19.3.521.
  • C.P. Wu, and H.Y. Li, Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions, JVC/J. Vib. Control., vol. 22, no. 1, pp. 89–107, 2016. DOI: 10.1177/1077546314528367.
  • Y. Chiker, M. Bachene, M. Guemana, B. Attaf, and S. Rechak, Free vibration analysis of multilayer functionally graded polymer nanocomposite plates reinforced with nonlinearly distributed carbon-based nanofillers using a layer-wise formulation model, Aerosp. Sci. Technol., vol. 104, pp. 105913, 2020. DOI: 10.1016/j.ast.2020.105913.
  • J.C. Halpin, Stiffness and expansion estimates for oriented short fiber composites, J. Compos. Mater., vol. 3, no. 4, pp. 732–734, 1969. DOI: 10.1177/002199836900300419.
  • N.D. Dat, N. Van Thanh, V. MinhAnh, and N.D. Duc, Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer, Mech. Adv. Mater. Struct., vol. 29, no. 10, pp. 1431–1448, 2022. DOI: 10.1080/15376494.2020.1822476.
  • H. Pathak, Crack interaction study in functionally graded materials (FGMs) using XFEM under thermal and mechanical loading environment, Mech. Adv. Mater. Struct., vol. 27, no. 11, pp. 903–926, 2020. DOI: 10.1080/15376494.2018.1501834.
  • A. Negi, G. Bhardwaj, J.S. Saini, K. Khanna, and R.K. Godara, Analysis of CNT reinforced polymer nanocomposite plate in the presence of discontinuities using XFEM, Theor. Appl. Fract. Mech., vol. 103, pp. 102292, 2019. DOI: 10.1016/j.tafmec.2019.102292.
  • M.H. Taheri, and P. Memarzadeh, International Journal of Mechanical Sciences Effect of crack on shear buckling of CNTRC plates, Int. J. Mech. Sci., vol. 229, pp. 107519, 2022. DOI: 10.1016/j.ijmecsci.2022.107519.
  • N.D. Duc, and P.P. Minh, Free vibration analysis of cracked FG CNTRC plates using phase field theory, Aerosp. Sci. Technol., vol. 112, pp. 106654, 2021. DOI: 10.1016/j.ast.2021.106654.
  • L.L. Ke, J. Yang, and S. Kitipornchai, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams, Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 28–37, 2013. DOI: 10.1080/15376494.2011.581412.
  • J. M. Berthelot, Fracture mechanisms and damage of composite materials, Compos. Mater., pp. 228–264, 1999. DOI: 10.1007/978-1-4612-0527-2_12
  • J.N. Reddy, Mechanics of Laminated Composite Plates and Shells, Second Edi, CRC Press, Boca Raton, FL, 2003. DOI: 10.1201/b12409.
  • L. Hadji, and M. Avcar, Free vibration analysis of FG porous sandwich plates under various boundary conditions, J. Appl. Comput. Mech., vol. 7, no. 2, pp. 505–519, 2021. DOI: 10.22055/jacm.2020.35328.2628.
  • B. Stahl, and L.M. Keer, Vibration and stability of cracked rectangular plates, Int. J. Solids Struct., vol. 8, no. 1, pp. 69–91, 1972. DOI: 10.1016/0020-7683(72)90052-2.
  • K.M. Liew, K.C. Hung, and M.K. Lim, A solution method for analysis of cracked plates under vibration, Eng. Fract. Mech., vol. 48, no. 3, pp. 393–404, 1994. DOI: 10.1016/0013-7944(94)90130-9.
  • P. Zhu, Z.X. Lei, and K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Compos. Struct., vol. 94, no. 4, pp. 1450–1460, 2012. DOI: 10.1016/j.compstruct.2011.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.